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1 INTRODUCTION

Imagine if AI decision-support tools not only improved the quality of our decisions but also enhanced our decision-
making skills in the process. Competence, mastery, and skill growth are fundamental drivers of motivation in the
workplace and beyond [25, 26]. Individuals are inherently driven to refine their abilities in the tasks with which they
engage, whether it’s making more informed treatment decisions for patients, sharpening writing skills, or mastering a
new programming language. The ongoing process of self-improvement not only leads to better outcomes — decisions,
papers, or code — it also provides intrinsic satisfaction by fulfilling people’s fundamental need for competence [25]. As
AI systems become more integrated into our decision-making tasks, a critical question arises: How will this assistance
affect our skill growth and competence in decision-making? Specifically, as AI systems increasingly offer ready-made

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components
of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
Manuscript submitted to ACM

1

ar
X

iv
:2

41
0.

04
25

3v
1 

 [
cs

.H
C

] 
 5

 O
ct

 2
02

4

HTTPS://ORCID.ORG/0000-0002-1897-9048
https://doi.org/XXXXXXX.XXXXXXX


Conference acronym ’XX, June 03–05, 2024, Woodstock, NY Buçinca, et al.

The AI suggests Exercise A because of: 
I would have chosen 

Exercise B 
Why A rather than B?

Unilateral explanationa

While both exercises are suited for this 
person’s abilities, preferences, and 
equipment, exercise A is more effective for 
achieving their goal of muscle building than 
exercise B.

The AI suggests Exercise A instead of 
the commonly chosen Exercise B becuase: 

Contrastive explanationb

I was thinking of 
Exercise B, but I see 

why Exercise A makes 
more sense! 

• the person's goal of muscle toning, which requires 
exercises that build lean mass

• the person’s current fitness level, which indicates 
they are ready for moderately intense activities 

• the availability of equipment
• the person’s preference for indoor activities

Fig. 1. A simplified illustration of (a) unilateral explanations, which list all the features contributing to the AI’s decision, and (b)
contrastive explanations, which highlight the differences between the AI’s choice and a likely human response for an exercise
recommendation task.

“solutions”, do individuals develop and improve the underlying skills needed to evaluate and generate high-quality
decisions independently, or do they risk becoming overly reliant on AI recommendations?

Fueling broader concerns about deskilling [54, 90], emerging empirical evidence [31, 73] suggests that automation
and the design of many current AI decision-support systems might not only fail to nurture our skills but could actively
degrade them. For instance, Rinta-Kahila et al. [73] found that people’s accounting skill degradation became apparent
once a system for fixed assets management was discontinued after years of use. And Gajos and Mamykina [31]
demonstrated that providing AI-generated recommendations and explanations did not improve people’s decision-
making abilities, even when those explanations contained facts from which individuals could learn and improve their
decision-making abilities.

Some have argued that when people are providedwithAI recommendations theymay overrely on the recommendation
and only superficially process the explanation [9, 10], thus not improve their learning [31]. Building on this, we posit
that even when people attend to the explanation, the reason AI systems fail to improve people’s skills, can be partially
attributed to the nature of the explanations provided, which often fail to address the specific knowledge gaps that users
seek to fill. Typically, these systems offer, what we call, unilateral explanations — justifications that focus on why a
particular AI recommendation was made, often by detailing the relevant features [72], highlighting regions [79], or
presenting the general reasoning in support of the decision. For example, an AI system might recommend treatment P as
the best option for a patient because it addresses symptoms X, Y, and Z, without contrasting it to alternative treatments
that may address some of those symptoms as well. Yet, research in social science and cognitive psychology has put forth
that people naturally seek explanations that are contrastive rather than unilateral [41, 56, 64]. When people ask why a
certain event occurred, or a certain choice was made — “Why P?”— they are often implicitly asking “Why P (referred to
as fact) rather than Q (referred to as foil)?” — where foil is a plausible alternative that was considered but not chosen.
Jacobs et al. [43] found that clinicians would prefer contrastive explanations from AI decision support systems as well,
which, for example compare and contrast the AI suggestions with existing standards of care. Such explanations are
intuitive and engaging because they focus only on the knowledge gap, addressing the specific points of divergence that
are of interest or confusion to the explainee.

While numerous computational approaches have been introduced for generating contrastive explanations [1, 3, 45, 86],
their focus typically lies on computing the contrast between the fact and the foil rather than on determining a high
quality foil. Some approaches consider the foil to be the closest class to the fact in the model [86], which we argue
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results in a model-centric foil that does not necessarily align with human reasoning about the task. Others assume
the foil is provided or explicitly inputted by the user [45]. Such additional step of making initial decisions has been
shown to affect both the acceptance of systems and subjective experience in AI-assisted decision-making [10, 30].
Thus, predicting a human-centered foil without asking for explicit user input remains a challenge for generating useful
contrastive explanations.

Building on the existing insights into AI-assisted decision-making, in this paper, we propose a novel approach to
enhance AI-powered decision-support systems by generating human-centric contrastive explanations. Our method
leverages a “mental model” of humans to provide an explanation in the form of “Why P rather than Q?” — where P
represents the AI’s recommendation and Q is a plausible alternative response from a human perspective. Unlike unilateral
explanations, which justify a recommendation by listing all dimensions that contributed to a decision, our contrastive
explanations focus on the distinctions between the AI’s suggestion and a likely human response, while highlighting
only the dimensions in which the two choices differ. We hypothesize that such contrastive explanations, which highlight
knowledge gaps between AI and predicted human responses, will foster greater cognitive engagement and enhance task
learning compared to unilateral explanations, while maintaining similar decision accuracy. Additionally, we explore
how the quality of the foil (predicted vs. random) and timing (before the person makes a decision vs. after an initial
decision) of the contrastive explanation affect their effectiveness, hypothesizing that high-quality foils will maximize
learning outcomes and pre-decision timing will maximize acceptance.

To generate contrastive explanations with which to test the hypotheses, we introduce a human-centric framework,
which we instantiated for an exercise recommendation decision-making task. Our framework consists of four modules:
(1) an AI task model that predicts a response to a decision task (fact), (2) a human model that predicts an average human’s
response for the same task (foil), (3) a contrast module that identifies the relevant dimensions where the fact and foil
differ, and (4) an LLM-powered presentation module that formats these differences into an explanation and adds common
sense knowledge (within the constraints provided by the other modules) that bridges the knowledge gap between
the AI’s recommendation and the human response. To test our hypotheses, we conducted an online between-subjects
experiment (N=628) comparing five conditions: no AI, unilateral explanations, contrastive explanations with a predicted
foil, contrastive explanations with a random foil, and contrastive explanations provided after an initial decision was
made (inputted foil). Our results demonstrated that contrastive explanations with a predicted foil resulted in similar
decision accuracy, but significantly enhanced human skill on the task (i.e., human learning) compared to unilateral
explanations. Within contrastive conditions, we found that timing of contrastive explanations affected subjective
experience but not objective outcomes. Participants in the contrastive explanations with predicted vs. inputted foil did
not differ significantly in terms of decision accuracy or human learning but contrastive explanations with predicted
foils resulted in significantly higher subjective perceptions of competence, autonomy, and relatedness to the AI than
contrastive explanations with inputted foils. Further, we found that the quality of the foil matters: although we used a
single model to predict human responses, participants interacting with contrastive explanations featuring a predicted
foil improved their learning more than those with a random foil, though the difference was only marginally significant.
This result suggests that personalized models, fine-tuned for each individual, may offer additional benefits.

In summary, this paper makes the following main contributions:

• We introduced a contrastive explanations framework for generating human-centered contrastive explanations
which compare AI’s decision choice to a predicted human response for the same task.
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• Our results demonstrated that such human-centered contrastive explanations significantly enhance decision-
making skills without sacrificing decision accuracy compared to unilateral explanations, a default explanation
design in AI-powered decision support.
• We further presented evidence about which design aspects of contrastive explanations affect objective outcomes
and people’s intrinsic motivation to engage with the decision task.
• Our work is the first to demonstrate that the content of explanations significantly impacts the improvement of
human skills, opening up new opportunities for developing more effective explanation designs.
• Our research suggests that decision support tools that consider the decision-makers’ knowledge and mental
model of the task can enhance people’s understanding and proficiency in the task more effectively than current
designs of decision-support which provide AI-centric unilateral explanations. With the growing adoption of
AI-powered support across tasks and settings, we believe that our findings offer a path forward toward AI
systems that upskill, augment, and improve human capabilities.

2 RELATEDWORK

2.1 Contrastive Explanations

The field of Explainable AI (XAI) has developed a wide range of methods aimed at making AI systems more understand-
able and useful to people [36]. Seminal approaches include feature-based explanations like LIME [72] and SHAP [59],
which demonstrate how individual features influence an AI decision, as well as saliency maps [79], which highlight
image regions that contributed to the outcome. These methods, which we refer to as unilateral approaches, focus on
explaining why the AI made a specific decision but do so in isolation, without explicitly comparing it to other plausible
alternatives.

Meanwhile, Miller [64]’s extensive review of social science research has underscored the significance of contrastive
explanations, sparking a new line of inquiry in ML and HCI research. Miller’s review highlights that, according to
social science literature, explanations people seek and provide are predominantly contrastive [53, 56, 64]. Rather than
simply asking “Why P?” to receive a list of features or a sequence of causal events, people often want to know “Why P
instead of Q?” — seeking an explanation that clarifies the difference between the actual outcome and an (often implicit)
alternative they expected. Lipton [56] refers to “P”, the actual event, as the fact, and the alternative “Q” as the foil.

Social science experts emphasize the value of contrastive explanations for two main reasons [65]. Firstly, they arise
from a person’s surprise over an unexpected event, revealing their preconceived expectations — essentially offering
insight into the individual’s mental model and highlighting their knowledge gaps [53, 63]. Secondly, providing and
asking for contrastive explanations is less complex and cognitively demanding, making the process more efficient for
both the inquirer and the respondent [53, 56, 92]. In AI-assisted decision-making, we further hypothesize that because
contrastive explanations highlight (1) the knowledge gap of the inquirer and (2) are shorter, and thus easier to parse,
they will result in improved knowledge acquisition from the decision-maker compared to explanations that highlight
all the decision factors.

In recent years, machine learning scholars have introduced various computational approaches for generating
contrastive explanations, such as pairwise class comparisons [1, 3], tree-based methods [81, 86], or identifying pertinent
positives and negatives [27]. Unlike in our work in which the foil seeks to convey explainee’s thinking and is generated
by a separate model, in the existing techniques, the foil is commonly determined as the closest alternative outcome that
would alter the model’s decision. For example, in tree-based approaches, foils are selected as the closest non-matching
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class leaf, while in counterfactual reasoning Hendricks et al. [39], foils are chosen based on their proximity to the input
data but belonging to a different class. It is not clear, however, if these methods correctly anticipate how people and the
models disagree. We argue that contrastive explanations in which the foil presents the decision-maker’s reasoning
more accurately reflect the social science understanding of contrastive reasoning, which seek to clarify the gaps in the
explainee’s reasoning.

One example of contrastive explanations in HCI literature is Zhang et al. [93]’s framework for generating contrastive
explanations in vocal emotion recognition. Like other machine learning techniques, this framework highlights the
differences between two similar instances with different class labels, using high-level, human-interpretable concepts
rather than granular features. Other related systems produce counterfactual explanations which compare decision
instances or hypothetical input space changes [48, 89], rather than outcome differences. It is important to note that
contrastive explanations are often conflated with counterfactual explanations, which explore how minimal input
changes could lead to different outcomes, while contrastive explanations clarify differences between two outcomes
(e.g., “Why treatment P rather than Q?”). In multi-class settings, these explanations (contrastive and counterfactual) are
distinct, but for binary classifications tasks, the distinction blurs.

2.2 AI-Assisted Decision-Making

2.2.1 Why optimizing human decision-making skills in AI-assisted decision-making matters? A growing concern, espe-
cially with the recent developments in generative AI [54, 90], deskilling refers to the process by which workers lose
skills or their proficiency in tasks due to a reduced need to actively engage in those tasks [8]. This often occurs when
technology, such as AI and automation [83], takes over some or all responsibilities that were previously performed by
humans. As individuals become more reliant on these systems to handle complex or repetitive tasks, they may stop
developing or maintaining the expertise required to perform those tasks independently [4]. For example, in AI-assisted
decision-making, workers might depend on AI to make recommendations or decisions, which can diminish their critical
thinking, problem-solving abilities, and overall competence in that domain over time. Indeed, recent empirical evidence
shows that the current designs of decision-support tools that provide AI recommendations and explanations do not
seem to support people’s growth of decision-making skills [31] and evidence from expert-based systems shows that
long-term dependence on such systems does lead to deskilling in those very tasks [73].

While powerful, AI systems are not infallible. They make errors due to biases in the data, limitations in the model, or
unforeseen circumstances and they even hallucinate. In the short term, when humans have strong decision-making
skills, they are better equipped to recognize and override AI mistakes, can critically assess the AI’s recommendations,
apply domain expertise, and contribute meaningfully to the decision-making process, resulting in more accurate and
nuanced outcomes. In the long term, nurturing independent and strong decision-making skills is essential for humans
to retain autonomy in decision-making, transfer their expertise to new situations, and adapt to evolving technologies.
Such independent decision-making protects both accountability and human agency as AI becomes more integrated into
workflows.

Our work adds to the nascent body of research in AI-assisted decision-making, which is concerned with improving
human decision-making skills in addition to accuracy of the decisions [11, 31].

2.2.2 Eliciting cognitive engagement to calibrate reliance on AI. Early optimism that AI decision-support tools will
inevitably enhance human decision quality [61] has dwindled in light of accruing empirical evidence that paints a
more complex picture [5, 10, 33, 75, 88]. Intuitive designs that rely on simple XAI approaches, such as providing AI
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recommendations alongside (unilateral) explanations, have been shown to lead to overreliance — where users follow
incorrect AI advice — across diverse tasks, settings, and explanation styles [5, 10, 32, 44, 75]. This empirical evidence
has prompted extensive research in designing interventions beyond explanation content that encourage appropriate
human reliance on AI. Some endeavours to addressing this challenge focus on training or onboarding sessions aimed
at helping individuals develop a mental model of the AI [18, 19, 49, 67, 68, 71], providing meta-information about the
AI’s behavior and limitations [15, 67], helping individuals calibrate their own self-confidence about the task [38, 60], or
enhance user agency by giving them control over input feature selection and algorithmic assistance [21, 51].

By prompting users to reflect on two choices, contrastive explanations fall within one such growing category
of interventions designed to compel deeper cognitive engagement with AI support. Scholars have suggested that
overreliance on AI often stems from people’s superficial engagement with AI recommendations and explanations [10,
31]. In response, various interventions have been developed to enhance cognitive engagement, including cognitive
forcing [10], evaluative AI [66], explanations provided without decision recommendations [31], explanations framed as
questions [24], or offering more than one decision suggestion [22, 58].

While many of these interventions have shown promise in human-AI decision-making quality, they often introduce
trade-offs, such as reducing subjective experience [10] or requiring more time [20, 84], compared to simply providing AI
recommendations with explanations. For instance, cognitive forcing functions [10] compel deeper cognitive engagement
by requiring people to make decisions before receiving AI support. While these interventions significantly reduce
overreliance compared to presenting AI recommendations and explanations upfront, they also lead to significantly
lower subjective experience. Evaluative AI also proposes a paradigm that involves decision-makers making provisional
decisions, before seeing an AI critique of their choice [66]. Although no empirical studies have yet operationalized
evaluative AI, evidence from Buçinca et al. [10] and Fogliato et al. [30] suggests that people generally tend to dislike
receiving AI support after having made a decision. Building on this evidence, we hypothesize that providing contrastive
explanations after prompting a person to make an initial decision may similarly have a negative effect on subjective
experience, thus hindering the uptake of systems that provide such support in real-life scenarios. However, there is a
trade-off here because providing a contrastive explanation after a person has revealed their initial decision has the
obvious advantage of revealing the actual foil to the system. This, in turn, can make the explanations more useful for
human decision-making and learning compared to settings where the foils are imperfectly predicted.

Offering more than one decision suggestion or source of advice has also been explored as a mechanism to enhance
engagement and calibrate reliance on AI support [5, 22, 58]. For example, Bansal et al. [5] show that providing top two
AI predictions and Lu et al. [58] show that offering a “second opinion” in addition to the main AI support, either from
another AI or peers, can reduce overreliance on AI recommendations in certain situations. Contrastive explanations
also make two options salient to the decision-maker — the fact and foil — along with reasoning that supports one over
the other. It is unclear whether the presence of the explicit comparison in contrastive explanations might dilute the
“second opinion” effect that previous studies have shown reduces overreliance.

Finally, the studies mentioned above treat cognitive engagement as a mechanism for fostering appropriate reliance
on AI, mostly focusing on optimizing human-AI decision accuracy by encouraging deeper thought about AI recommen-
dations. Building on the work of Gajos and Mamykina [31], our study instead examines cognitive engagement as a
means of enhancing human learning about the task.

2.2.3 Assisting decision-making with LLM-generated explanations. The emergence of Large Language Models (LLMs) has
sparked interest in their potential to generate explanations that enhance decision-making. In the domain of programming
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assistants, Yan et al. [91] introduced an LLM-powered system that generates natural language explanations to clarify
the functionality of each code suggestion. For data annotation tasks, Wang et al. [87] leveraged an LLM to predict
annotation labels and provide explanations for its choices. In recommendation systems, Silva et al. [78] used LLMs both
as the recommendation engine and as a generator of personalized explanations to improve user experience.

In contrast to such approaches, which use LLMs for both task-centric predictions (e.g., code suggestions, recom-
mendations) and explanation, our work separates these functions. Like Slack et al. [80], who introduce a chat-based
interface to query a predictive machine learning model, we exploit LLMs for their language generation capabilities,
and in addition for their common sense reasoning. We rely on a trusted predictive model for generating task-related
predictions and explanation dimensions, while the LLM is solely responsible for turning a scaffold produced by the
predictive model into natural language, and filling in small common-sense knowledge gaps needed to interpret the
model’s predictions. This separation preserves the accuracy of predictions and explanations while benefiting from
the interpretability and coherence of LLM-generated rationalizations, thereby minimizing the risk of the notorious
hallucinations for which LLMs are known [47].

2.3 Human Intrinsic Motivation and AI Assistance

With AI systems redefining workflows and the way tasks are carried out, questions surrounding their effect on people’s
motivation about the tasks for which they receive assistance are becoming more pressing [11]. According to the seminal
Self-Determination Theory (SDT), individuals feel intrinsically motivated when three psychological needs—competence,
autonomy, and relatedness—are met during an activity [25]. Competence refers to the need to feel skilled and effective
in the activity, autonomy reflects the need to have control over how the activity is carried out, and relatedness involves
the need to feel connected to others and to experience a sense of belonging while engaging in the activity. These
three needs are fundamental for fostering intrinsic motivation, which leads to greater engagement, performance, and
overall satisfaction with the task [25]. The introduction of AI assistance into decision-making processes can affect these
psychological needs in multiple ways. For example, while AI might enhance short-term feelings of competence by
providing support in the moment of decision-making [29], it may simultaneously undermine long-term mastery, as
current designs do not always facilitate skill development [31]. Similarly, AI can diminish a user’s sense of autonomy if
they feel overly dependent on the system, reducing their ownership of task outcomes.

We hypothesize that both the outcomes of the interaction and the design of the AI system influence perceptions of
competence and autonomy. On the outcome side, we expect that AI systems that actively support skill development
will enhance feelings of competence. In terms of design, approaches where the AI critiques each decision after it is
made (e.g., contrastive after) may undermine users’ feelings of competence and autonomy, as they could perceive the AI
more as a micromanager than a supportive tool, constantly pointing out flaws and dictating its preferred way of doing
things. Additionally, even when AI assistance is provided before a decision, designs that emphasize only one option
(e.g., unilateral conditions) can still reduce the sense of autonomy compared to those that present multiple options,
broadening the decision-maker’s scope of consideration (e.g., contrastive before conditions).

In SDT, relatedness refers to the connection an individual feels toward colleagues or collaborators, typically measured
through questions about trust, similarity in reasoning, and willingness to engage in future interactions. We adapt these
constructs to assess relatedness to AI, hypothesizing that designs fostering competence and autonomy will similarly
enhance relatedness to AI systems.
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  fact
pilates

resistance training

{flexibility goal}

{muscle building goal}

Contrastive explanation template

AI model

human model contrast 
module

LLM-based 
presentation 

module

  foil

Sfact

Sfoil

  fact
pilates

resistance training

  foil

generates 
interpretable 
explanations 
and adds 
common sense 
knowledge

High-level sentence that first acknowledges the concepts in 
Sfoil  for which the foil is better than the fact (if any), then 
highlights the concepts in Sfact for which the fact is superior 
to the foil.

•  Concept 1 (e.g., goal):  A sentence contrasting fact and foil 
along concept 1. (e.g., pilates supports flexibility and muscle toning, 
while resistance training supports only muscle building goals). A 
sentence connecting this characteristic of the fact to a benefit 
relevant to the character. (e.g., This benefits Natalie who aims to 
build muscles and enhance flexibility).

• Concept 2: …

Fig. 2. The Contrastive Explanation Framework: The AI task model predicts the AI’s response for a given decision task (fact), while
the human model predicts the user’s response for the same task (foil). The contrastive module then analyzes the differences between
the AI’s and the human’s responses, generating task dimensions where the fact is superior to the foil (𝑆fact) and, if any, where the foil
is superior to the fact (𝑆foil). Finally, the presentation module, powered by a large language model (LLM), formats the information
into an interpretable explanation, filling in small common-sense knowledge gaps within the constraints of the predictive models. The
example generation outlined in the figure is relates to the character vignette in Figure 3

.

3 THE CONTRASTIVE EXPLANATION FRAMEWORK & HYPOTHESES

Imagine a clinician reviewing an AI-powered decision-support system’s recommendation for a patient’s treatment
plan. The AI suggests Medication A, but the clinician had Medication B in mind based on their experience with this
condition. Existing AI systems would simply explain why Medication A is recommended. However, this leaves the
clinician wondering why Medication B, which they deemed suitable, is not the better choice. A contrastive explanation
may elucidate this knowledge gap as follows: “While Medication B is a common and a viable choice for most patients

because of its short treatment duration, Medication A is recommended due to its lower risk of drug interactions with this

patient’s current medications.”

We propose the Contrastive Explanation Framework to address the limitations of current AI-powered decision-
support systems by providing contrastive explanations that acknowledge human’s alternative considerations when
suggesting a decision. This framework is composed of four main components: (1) an AI task model, (2) a model of how
humans are likely to reason about this task, (3) a contrastive module, and (4) a presentation module. The AI task model
is the standard AI system that predicts the AI’s response for a given decision task (fact), while the human model predicts
an average user’s response — a plausible alternative (foil) — for the same task based on a model trained on previous
human decisions. Based on AI model (e.g., weights), the contrastive module then analyzes the differences between the
AI’s and the likely human’s responses, generating task concepts in which the fact is superior to the foil (e.g., lower risk
of drug interaction) and task concepts, if any, in which the foil is superior to the fact (e.g., shorter treatment duration).
Finally, the presentation module, powered by a large language model, formats these dimensions and fills in the common
sense knowledge that focuses on the knowledge gap that may lead someone to pick foil as opposed to fact.

To evaluate the effectiveness of contrastive explanations in improving human learning and accuracy in AI-assisted
decision-making, we instantiated this framework with an exercise recommendation task, and conducted an experiment
in which people were asked to complete a sequence of decisions and were randomized in one of the 5 different conditions:

• No AI (Baseline). Participants in the No AI condition completed the study without any AI support.
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• Unilateral In this condition, participants interacted with the typical AI recommendation and explanation
paradigm. The AI suggested a choice and provided reasoning to justify why that choice was the best one. The
explanation was unilateral, emphasizing all the concepts and evidence supporting the AI’s suggestion.
• Contrastive predicted (with predicted foil). The contrastive predicted condition was designed to provide
participants with a contrastive explanation that compares the AI recommendation (fact) with the alternative
(foil) that a human may likely consider, as predicted by the human model. In the interface, we presented the foil
as a choice that “many people” would likely make in a similar situation. The explanation highlighted only the
concept(s) in which the two choices differ, emphasizing why the AI’s recommendation is superior to the foil.
• Contrastive random (with random foil). Presentation-wise, the contrastive random condition was identical to
the contrastive condition. However, in this case, the foil was selected randomly from the six possible choices
rather than being predicted by the human model.
• Contrastive after (with inputted foil). In the contrastive after condition, participants first made their own
decision before receiving the AI’s recommendation and the contrastive explanation, in which participant’s
decision was used as the foil. In situations when the inputted foil was the same as the AI suggestion, participants
were presented with a unilateral explanation supporting their choice.

3.1 Hypotheses and ResearchQuestions

In our hypotheses, we sometimes refer jointly to contrastive predicted and contrastive after conditions, in which the foil
is not random, as contrastive with a sensible foil.

Our main hypotheses are that contrastive explanations with a sensible foil will improve participants’ decision-making
skills 1 more effectively and result in accuracy that is equal to or better than unilateral explanations. Furthermore,
within the contrastive conditions, we hypothesize that contrastive explanations with a predicted foil will result in greater
human learning than those with a random foil, and offer a superior subjective experience compared to contrastive
explanations with an inputted foil.

We categorize these main and other hypotheses and research questions by interaction outcomes — human learning,
accuracy, and subjective experience — and elaborate them below. To enhance readability, we abbreviate learning-focused
hypotheses and research questions as H-L and RQ-L and accuracy-focused ones as H-A and RQ-A, respectively. For
hypotheses related to subjective measures, we use the -S suffix (e.g., H-S1).

3.1.1 Human Learning.

H-L1: Contrastive explanations with sensible foil — predicted (H-L1a) or inputted (H-L1b) — will lead to more
learning than providing people with no AI support.
H-L2: Contrastive explanations with sensible foil — predicted (H-L2a) or inputted (H-L2b) — will lead to more
learning than unilateral explanations.
H-L3: Contrastive explanations with predicted foil will lead to more learning than contrastive explanations with a
random foil.
RQ-L1:Will contrastive explanations with predicted foil (provided at the decision-making time) lead to different
learning than contrastive explanations after the decision is made (contrastive after)?

3.1.2 Accuracy & Overreliance.

1In this paper, we use the terms “improving human learning” and “improving decision-making skills” interchangeably.
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Find an optimal exercise for Natalie 

By taking into account the information below determine the exercise that is better suited for Natalie.

Natalie wants to build muscles and increase flexibility. She is 62 years old and is retired. Her 
current engagement in physical activity is low. She is not overweight. She enjoys group and indoor 
activities. (Assume Natalie has the necessary resources to perform any of the exercises.)

I would suggest

Many people’s choice

Many people would choose resistance training for Natalie.

AI suggestion

The AI suggests pilates as the optimal exercise for Natalie.

While resistance training may provide better muscle building results, pilates proves to be 
more beneficial in terms of elevating overall flexibility.

•   Goal flexibility: Pilates is an exercise that focuses heavily on improving flexibility by 
elongating, toning muscles and increasing muscle elasticity, which contrasts with 
resistance training that focuses primarily on muscle building. This core characteristic 
of pilates is ideally suited for Natalie who aims to both build muscles and enhance 
her flexibility.

AI explanation

(a) Sample task with contrastive explanation

AI suggestion

The AI suggests pilates as the optimal exercise for Natalie.

•   Intensity: Pilates exercises are low to moderate in intensity, making them suitable for 
Natalie's current fitness level.

•   Goal: Through practices of controlled movements and poses, Pilates significantly 
helps in building muscle strength and increasing flexibility, aligning with Natalie's 
fitness goals.

•   Preference: Pilates is usually practiced in a group setting, which satisfies Natalie's
     preference for group activities. It can also be performed indoors, fitting her 

enjoyment of indoor activities.

AI explanation

(b) Unilateral explanation

Your choice

You chose resistance training for Natalie.

AI suggestion

The AI suggests pilates as the optimal exercise for Natalie.

While resistance training may provide better muscle building results, pilates proves to be 
more beneficial in terms of elevating overall flexibility.

•   Goal flexibility: Pilates is an exercise that focuses heavily on improving flexibility by 
elongating, toning muscles and increasing muscle elasticity, which contrasts with 
resistance training that focuses primarily on muscle building. This core characteristic 
of pilates is ideally suited for Natalie who aims to both build muscles and enhance 
her flexibility.

AI explanation

(c) Contrastive explanation after

Fig. 3. Illustration of the exercise recommendation decision-making task featuring different explanation designs. 3a shows a sample of
the task with contrastive explanation, whereas 3b and 3c depict only the explanations for the respective conditions. In the contrastive
random condition, the presentation was identical to the contrastive condition, but with the alternative (foil) selected randomly. In the
no-AI condition (not illustrated), participants made decisions without any AI assistance.

H-A1: Contrastive explanations with sensible foil — predicted (H-A1a) or inputted (H-A1b) — will lead to equal or
better decision accuracy compared to unilateral explanations.
RQ-A1:Will contrastive explanations — predicted or random — which present two choices, reduce overreliance on
AI, compared to unilateral explanations?

3.1.3 Subjective Experience.

H-S1: Contrastive explanations with predicted foil will lead to higher perceived competence, autonomy, and related-
ness to AI than unilateral explanations.
H-S2: Contrastive explanations with predicted foil will lead to higher perceived competence, autonomy, and related-
ness to AI than contrastive explanations with inputted foil.

In the following sections, we describe an exercise recommendation task and the instantiation and implementation of
the contrastive explanations framework for the exercise recommendation task.

4 EXERCISE RECOMMENDATION TASK DESIGN

To create a decision-making task accessible to laypeople on crowd-sourcing platforms while presenting cognitive chal-
lenges similar to high-stakes decisions (e.g., treatment selection), we collaborated with a kinesiology expert, a co-author
of this paper. We designed scenarios for an exercise recommendation task, as shown in Figure 3. Participants are tasked
to choose the best exercise from a list of options based on a fictional character’s description, goals, and preferences. This
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task is designed to be easy to understand yet complex enough to mimic clinical treatment decisions. Clinicians consider
many (sometimes competing) factors when selecting treatments, such as patient condition, treatment preferences,
side-effect tolerance, and constraints. Similarly, selecting the right exercise involves weighing the individual’s goals,
preferences, and capabilities, requiring analogous cognitive steps.

4.1 Generating the fictitious characters

We generated vignettes of fictitious people by randomly sampling their demographics from probabilities obtained
from the US Census2, Centers for Disease Control and Prevention3, and the US Bureau of Labor statistics4 (name, age,
gender, BMI, physical activity level, occupation). According to the sampled fictitious character, we manipulated or
randomly sampled the following factors which were deemed important for exercise prescription by the expert: (1) their
fitness level and maximal intensity (based on demographics), (2) their exercise goal (e.g., building muscles, weight loss,
flexibility), and (3) their exercise preference (e.g., indoor/outdoor, group/individual). We implemented these steps as
fictitious character generation process that allowed us to generate different characters.

4.2 Curating the exercises

To build an exercise repository for recommending activities to fictional individuals, we curated a list of 59 leisure
activities from a comprehensive compendium, which included various physical activities, from sports to everyday tasks
like housework and occupational activities [2]. In the compendium, each activity was labeled with its MET (metabolic
equivalent), which denotes the energy requirement for basal homeostasis (1 MET is roughly the energy required to
sleep or watch TV). Moderate activities require 3-6 METs, while vigorous activities require more than 6 METs. We
also labeled the exercises based on (i) their goals (cardio, muscle building, flexibility), (ii) whether they are typically
performed indoors or outdoors, and (iii) whether they are typically performed individually or in a group. From this list,
we selected seven representative exercises for the dropdown menu: aerobics, bicycling, boxing, jog/walk combination,
pilates, resistance training, and swimming. See Appendix for a detailed description of the selection process.

4.3 Representing characters and exercises

To prescribe exercises to characters, we first represented them in a joint representation space. Guided by the domain
expert, we constructed a relatively simple representation space consisting of three broad concepts: (1) intensity, (2) goal,
and (3) preference. Each exercise and generated character was encoded onto these three broad concepts as described
below.

Intensity. For exercises, intensity captures the level of exertion or effort the exercise requires, measured in METs.
One MET is defined as the oxygen consumption of 3.5 milliliters of oxygen per kilogram of body weight per minute (3.5
ml/kg/min), which is roughly the rate of oxygen consumption at rest.

For characters, intensity captures the level of exertion or effort a character can sustain during physical activity (i.e.,
their cardiorespiratory fitness). It is quantified by the reserve oxygen uptake (𝑉𝑂2𝑅 ), which represents the additional
oxygen consumption capacity a person has beyond their resting state. This reserve is determined by subtracting the
resting oxygen uptake (3.5 ml/kg/min or 1 MET) from the maximal oxygen uptake (𝑉𝑂2𝑚𝑎𝑥

), which is the highest
rate at which the body can use oxygen during intense physical activity. Maximal oxygen uptake is assessed in clincial

2data.census.gov
3data.cdc.gov
4bls.gov
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settings using a treadmill test, but various equations have been proposed as useful proxies [70]. Following Jang et al.
[46], we calculated the cardiorespiratory fitness of a character as a function of age, sex, BMI, and current physical
activity level 5(rating of physical activity on a 7-point scale).

Goal. For exercises, goal captures the type of benefit the exercise has in the body, consisting of three dimensions:
cardiovascular improvement, muscle building, or flexibility. For characters, goal reflects what the character aims to
achieve through exercise, in terms of the same three dimensions: improving cardiovascular health, building muscle, or
enhancing flexibility. Note that additional domain knowledge (e.g., cardio is beneficial for weight loss) is necessary to
convert some of the higher level character’s exercise goals (e.g., losing weight) to the representation space.

Preference. For exercises, preference indicates whether the exercise is typically performed indoors or outdoors,
and whether it is usually done individually or in a group. For characters, preference captures the character’s preferred
exercise environment (indoor/outdoor) and social setting (individual/group).

4.4 Designing the objective function

Having constructed joint representations for characters and exercises, we now formalize our setting and explain the
objective function we designed for recommending exercises to characters.

Let a fictitious character representation be x ∈ R𝐷 and an exercise representation be y ∈ R𝐷 , where 𝐷 = 6
and both representations are structured with dimensions representing intensity, goals, and preferences (e.g., x =

[𝑥MET, 𝑥cardio, 𝑥muscle, 𝑥flexibility, 𝑥environment, 𝑥social setting]𝑇 , with y following a similar structure). Our goal was to
create a function that scores the “goodness” of an exercise for the given character. We designed a linear objective
function:

𝑓 (g(x, y),w) = w𝑇 g(x, y), (1)

where g(x, y) is a piece-wise vector-valued function (devised with the expert) that returns a joint representation (vector)
of the person and the exercise for each dimension. g(x, y) ∈ R𝐷+1 concerning the following aspects: intensity, goal, and
preference.

g(x, y) =



min(0, 𝑥1 − 𝑦1)

min(0, 𝑦1 − 𝑥1)

[1[𝑥𝑐 > 0] ((𝑦𝑐 − 𝑥𝑐 ) + 1[𝑦𝑐 == 𝑥𝑐 ])]𝑐∈{2,3,4}

1[𝑦𝑐 == 𝑥𝑐 ]𝑐∈{5,6}



← Intensity: Penalize exercises exceeding character’s capabilities.

← Intensity: Penalize exercises underutilizing character’s capabilities.

← Goal: Match each stated subgoal (cardio, muscle building, flexibility).

← Preference: Match each preference (environment, social setting).

(2)

In the equation above, the subscripts refer to dimensions of x and y, and 1 denotes the indicator function, which
takes the value 1 if the condition inside the brackets is true and 0 otherwise.

4.5 Learning the expert weights

The parameterized objective function (equation 1) enables learning weights w from different sources of labels. We aim
to learn 𝑓expert with weights we based on expert labels, and 𝑓human with weights wh based on crowdworker labels. The
expert model 𝑓expert, takes a description of a fictitious character and exercise, and outputs a real-valued score indicating
how well the exercise matches the goals, abilities and preferences of the fictitious character. We trained and validated

5𝑉𝑂2𝑚𝑎𝑥 = 48.392 − 0.088(𝑎𝑔𝑒 ) + 12.335(𝑠𝑒𝑥 ;𝑚𝑒𝑛 = 1, 𝑤𝑜𝑚𝑒𝑛 = 0) − 0.386(𝐵𝑀𝐼 ) + 0.693(𝑃𝐴)
12
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this model on expert labels of optimal exercises for a series of characters. Similarly, the human model, which captures
how humans reason on average (described in 5.2), was trained on crowdworkers’ (i.e., laypeople’s) labels.

Generating a series of diverse fictitious characters, we asked the kinesiology expert to select top exercises for them
from a list of top 15 exercises (out of 59) selected with a “dummy” scoring function which equally weighted each
dimension. For every character, the expert provided a best set of exercises S1 typically consisting of two or three similar
exercises (e.g., pilates, yoga), and a second best set of exercises S2 that would still be a reasonable choice but not as
good as the first set. With 15 exercises in the list, these labels provided multiple pairwise comparisons between the
individual exercises. For every exercise y𝑖 ∈ S1, then y𝑖 is a better choice than y𝑗 for every other exercise y𝑗 ∉ S1.
Similarly, for every exercise y𝑖 ∈ S2, then y𝑖 is a better choice than y𝑗 for every y𝑗 ∉ {S1

⋃S2}.
With a dataset of rankings, our goal was to learn the expert weights w𝑒 from equation 1. Ranking problems,

particularly with linear ranking functions, can be transformed into classification problems by considering pairwise
differences between elements [40]. This approach involves transforming the ranking task of a set of items (e.g., exercises)
into several binary classification tasks. For each item pair, a difference vector of their features (u𝑖 − u𝑗 ) is generated and
the label corresponds to their relative order (e.g., the label 𝑣 = 1 if item 𝑖 is a better choice than item 𝑗 and −1 otherwise).
In our setting, the items correspond to exercises. A binary classifier is then trained on these labeled pairs to predict
which of the given two items should be ranked higher. When using a linear binary classifier 𝑣 = 𝑠𝑖𝑔𝑛(w𝑇 (u𝑖 − u𝑗 ) + 𝑏),
the coefficients of the model represent the weights of the feature differences, thereby indicating the importance of each
feature dimension in determining the ranking.

Let exercise y∗ be a better choice than exercise y𝑖 for a character x. In our setting this looks as follows:

[g(x, y∗) − g(x, y𝑖 ), 1] or [g(x, y𝑖 ) − g(x, y∗),−1],

where the first element in the square brackets is the input to our classifier model, and the second element is the label.
To avoid biasing the classifier, we randomly assign a pair to either have a positive (1) or a negative (-1) label (i.e., “y∗ is

better than y𝑖 ” or “y𝑖 is worse than y∗”). We fit an SVM classifier with a linear kernel to these tuples of data with expert
labels, thereby recovering the coefficients as the expert weights w𝑒 for the scoring function: 𝑓 (g(x, y),w𝑒 ) = w𝑇

𝑒 g(x, y).
(For implementation details and the evaluation of the expert model see Appendix A.1.1.) We followed a similar approach
to learn the human model weights from crowd-sourced data, as described in Section 5.2.

5 APPLYING THE CONTRASTIVE EXPLANATION FRAMEWORK TO THE EXERCISE TASK

Our goal is to generate contrastive explanations (using the framework in section 3 for the exercise recommendation
task explained in section 4. In this section, we describe this process, and we end up with contrastive explanations like
the ones shown in figure 3. To do so, we use a simulated AI model (we control the accuracy of this model), generate
foils using the human model weights, generate contrast concepts using our representation g(x, y), and generate the
explanations using an LLM.

5.1 Simulated AI model: Generating the fact

The AI model in our framework represents the common way in which models are trained for specific tasks (e.g., disease
diagnosis) by exposing them to vast amounts of data, which allows them to identify patterns and make decisions based
on learned statistical relationships. However, because these models operate solely within the confines of the data they
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have encountered, they achieve high performance in familiar decision instances, but they also make mistakes when
encountering novel or poorly-represented scenarios.

To emulate real-world situations, we designed a simulated AI model such that it performs better than the average
human but that it also occasionally makes mistakes. We chose to simulate the AI model because we wanted to have
control over the types of mistakes the AI makes. Our formative studies indicated that unassisted people achieve on
average 30% accuracy on selecting the top exercise out of 7 choices, and we designed the AI model to have an accuracy
71.4%. We used the expert model weights to decide the top exercise recommendation when the AI made a correct
decision. For a given decision instance (i.e., character), the top AI suggestion is the exercise with the highest score
under the expert model weights yfact = argmaxy𝑖 (𝑓 (g(x, y𝑖 ),w𝑒 ). In the contrastive explanation framework, we refer
to the AI generated exercise as the fact (even when it is a wrong suggestion).

To make the AI err, we chose to select a reasonable alternative from among the exercises rather than a random one,
as the latter would make AI errors too obvious to participants. Therefore, the AI suggestion in such instances was the
foil — the top exercise selected by the human model (as described in Section 5.2: this is always different to the expert
model’s top exercise.).

5.2 Human model: Generating the foil

As motivated in previous sections, we believe that contrastive explanations are most effective when the foil represents
a likely human answer. For instance, in contexts with established guidelines, such as medical decision-making, the
foil could be the guideline-recommended action [43]. In situations without established guidelines, the foil can be
inferred from prior human decisions. In our implementation of the contrastive explanation framework for the exercise
recommendation task, we chose to implement the foil as the likely human response to a given question. Specifically, we
build a human model that predicts the exercise laypeople would select for previously unseen fictitious characters by
training on unassisted human responses. We implemented a generic model to represent human decision-making, which
was sufficient for our simple task. However, depending on the context, personalized models that adapt and update as
they learn more about individual users could be more appropriate.

We generated a series of fictitious characters and ran an online study on Prolific to collect responses from crowd
workers who served as non-domain experts. See Appendix A.2.1 for details of the data collection study and the evaluation
of the human model. To learn the human model weights, we followed the same procedure as we did for the expert
model weights, and as described in section 4.5.

Given a character and two exercises, our learnt linear SVM classifier predicted which exercise is more likely to be
selected by the human non-expert. The coefficients of the classifier with which this decision was achieved yielded the
human model weights for each concept (i.e., goal, intensity, preference). Therefore, we constructed a scoring function
based on human model weights as well: 𝑓 (g(x, y),wℎ) = w𝑇

ℎ
g(x, y).

In our implementation, we selected the foil as the exercise with the highest score under the human weights that was
not the same as the expert choice: yfoil = argmaxy𝑖 (𝑓 (g(x, y𝑖 ),wℎ), where y𝑖 ≠ yfact. This approach selects the most
likely incorrect human answer. When the simulated AI was to provide a wrong suggestion (i.e., the fact was suboptimal),
the output of this human model was presented as the fact, and the new foil was the second most likely incorrect human
model answer: this is still an incorrect choice, but less likely to be selected by people than the first one.
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5.3 Contrast Module: Generating the contrast concepts

The goal of the contrast module is to generate the dimensions or features in which the fact and the foil differ. Specifically,
what aspects render the fact superior to the foil, and in what aspects (if in any) is the foil superior to the fact.

In our setting, these dimensions indicate the three main concepts of the task: intensity, goal, and preference. To
generate these dimensions we employed the following approach. Let yfact and yfoil be the two exercises generated
by the AI and the human model for character x, respectively. Our goal is to identify the dimensions in which these
two exercises differ based on the expert model’s weights. For each exercise, we computed the element-wise product of
the expert model weights with the joint character-exercise representation g(x, y), resulting in the weighted vectors
w𝑒 ◦ g(x, yfact) and w𝑒 ◦ g(x, yfoil) for the AI-generated exercise and the human model-generated exercise, respectively.

Next, we calculated the difference between these two weighted vectors to determine the dimensions along which the
exercises differ according to the expert model’s weighting scheme. This difference vector, ∆g𝐴𝐼 , is given by:

∆g𝐴𝐼 = w𝑒 ◦ g(x, yfact) −w𝑒 ◦ g(x, yfoil) (3)

Non-zero dimensions of∆g𝐴𝐼 indicate where the two exercises differ. A positive value indicates that the fact is superior
to the foil in that dimension, while a negative value indicates that the foil is superior to the fact. Therefore, the contrastive
module generates two sets of dimensions, dimensions for which the fact is superior to the foil: Sfact = {𝑐 | ∆g𝐴𝐼 [𝑐] > 0}
and those for which the foil is superior to the fact Sfoil = {𝑐 | ∆g𝐴𝐼 [𝑐] < 0}, where 𝑐 denotes the dimension. Because
the foil may not be superior to the fact in any dimension, Sfoil can be an empty set. However, by definition Sfact ≠ ∅.

5.4 Presentation Module: Generating interpretable explanations

Once the fact, foil, and the dimensions where they differ are generated, the presentation module’s purpose is to
convert this information into a format that is easily understood by humans. We chose to implement an LLM-powered
presentation module which is guided by our trusted predictive model, allowing little room for hallucinations. Given
yfact, yfoil, and the sets for which each are superior (Sfact, Sfoil), the LLM-powered presentation module adds common
sense knowledge and turns the explanations into prose.

Specifically, the LLM adds knowledge to create the mapping from the the representation space (i.e., concepts) in
which the predictive model operates to the input (i.e., vignette) and output spaces (i.e., exercises). For example, let x be
a fictitious character whose goal is to lose weight. Let yfact correspond to the representation of activity running and
yfoil correspond to the representation of activity pilates. Further, let Sfact include {goal_cardio}. In other words, running
is superior to pilates because it supports cardio goals. The remaining domain knowledge required to fully understand
the explanations are the following: ‘cardio benefits weight loss’, ‘running is a cardio exercise’ and ‘pilates is not a cardio
exercise’.

Therefore, highlighting cardio as a differing dimension may not be enough without explaining those domain facts.
The LLM is prompted to fill in these knowledge gaps, given the information ‘running is superior to pilates in supporting
cardio goals’. Note that there is little room for the LLM to hallucinate facts, because we are constraining the generation
process with the fact, foil, and concepts (Sfact, Sfoil) that are generated by the predictive models.

The LLM was always shown the character’s vignette, and told the representation space dimensions that we identified
as important (from section 4.4).
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As shown in Fig 2, for contrastive explanations, the LLM was given yfact, yfoil, Sfact, Sfoil. For unilateral explanations,
only yfact was provided to the LLM. Templates which guided the LLM to generate the explanations are provided in the
Appendix A.3. We used the OpenAI API [69] and chose GPT-4 to generate the explanations 6.

6 EXPERIMENT

6.1 Task description

Participants were shown vignettes of fictitious characters and were asked to select the optimal exercise for the character
in question based on their goals, capabilities, and preferences. They had to make a selection of the top exercise among 7
exercises, which were fixed choices across vignettes and alphabetically ordered in the drop-down list: aerobics, bicycling,
boxing, jog/walk combination, pilates, resistance training, and swimming.

6.2 Conditions

Participants were randomized into one of the five conditions:no AI, unilateral, contrastive predicted, contrastive after,
and contrastive random, as described in Section 3. Figure 3 provides a sample of a decision task with illustrations of the
key conditions.

6.3 Procedure

Participants accessed the study online through Prolific, where they first provided informed consent. They then completed
pre-task questionnaires, including a brief demographic survey, a six-item Need for Cognition (NFC) Scale [55], and a
seven-item Actively Open-minded Thinking (AOT) Scale [37]. The study consisted of three blocks: pre-test and post-test
blocks, each with 5 exercise prescription tasks without AI support which served for measuring human learning, and
an intervention block with 14 tasks where participants interacted with one of the AI interaction designs (or no AI,
depending on their randomization). After completing the tasks, participants filled out a shortened version of the Intrinsic
Motivation Inventory (IMI) [62, 74], a self-reported instrument intended to measure participants’ subjective experience
with the task, which assessed their perceived autonomy, competence, relatedness to AI, and interest/enjoyment, using 4
questions for each construct (except for relatedness, for which 3 questions where used). An additional question was
included to assess mental demand.

6.4 Participants

We conducted a power analysis using G*Power [28] to determine the required sample size for detecting a small effect
size in our study with 5 conditions. With a small effect size, an 𝛼 error probability of 0.05, and a desired power of 0.80,
the analysis indicated that a total of 548 participants would be needed to achieve sufficient power to detect the effect. To
account for filtering of spammers, a total of 800 participants were recruited to complete the task via Prolific. Participation
was limited to US adults fluent in English. Recruited in batches, participants received an average compensation of
$2.70 (USD) per task. To ensure a compensation rate of $12 per hour, we adjusted the payment from $2.40 in the initial
small batches to $2.75 in later batches, reflecting the median time participants spent on the study. The average age of
participants was𝑀 = 35.76 (𝑆𝐷 = 11.71) and their education distribution was 0.5% pre-high school, 19.4% high school,
75.8% college, 5.7% post-graduate degree, and 4.6% did not disclose their education.

6The first author manually reviewed the generated explanations to verify whether the LLM introduced any hallucinations; we elaborate on this process in
the limitations section.
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6.4.1 Exclusion criteria. We retained 628 participants for analyses. To ensure meaningful engagement, participants
with a median response time under 4 seconds were excluded, as this suggested insufficient consideration of the tasks,
which required reading vignettes and selecting exercises. Those with any response time exceeding 2.5 minutes (90th
percentile) were also removed to avoid data distortion from distractions. Additionally, participants in AI-assisted
conditions who performed near random (below 20% accuracy) or selected the same exercise for more than half of the
study were excluded for potential misunderstanding. For subjective experience analyses, 6 participants were removed
due to technical issues they encountered during the post-study questionnaire.

6.5 Approval

This study received approval from our institution’s IRB under protocol number [anonymized for review].

6.6 Design & Analysis

This study followed a between-subjects design, with the condition as the factor. Each participant interacted with one of
the five conditions.

We collected the following indicators of performance and learning:

• Accuracy: Percentage of correct answers provided by participants in the intervention block, where a correct
answer is one that matches the ground truth.
• Overreliance: Percentage of answers that matched the AI’s suggestions in questions for which participants
received AI support and the AI’s suggestion was incorrect.
• Learning: Percentage of correct answers on post-intervention questions (controlled by participant’s performance
on pre-intervention questions).

For accuracy, learning, and overreliance in text and in figures we report the marginal means produced by the regression
models that included performance on pre-intervention questions as a covariate.

To assess the subjective experience, we collected the following measures assessed on a 5-point Likert scale, unless
stated differently (See Appendix A.4 for the questionnaire):

• Perceived Competence: Four questions adapted from the Intrinsic Motivation Inventory (IMI) to measure
participants’ feelings of effectiveness and competence in the task.
• Perceived Autonomy (Choice): Four questions adapted from the IMI capturing the degree of autonomy and
freedom participants felt in their decision-making.
• Relatedness to AI: Three questions adapted from the IMI measured on a Likert scale, to evaluate participants’
sense of connection and trust in the AI.
• Interest/Enjoyment: Four questions adapted from the IMI to assess participants’ interest and enjoyment during
the study.
• Mental Demand: A single question, measuring the cognitive effort required by participants.

To assess the effects of experimental conditions on learning, accuracy, and subjective measures, we employed analysis
of covariance (ANCOVA). For human learning, ANCOVA was applied to the average post-intervention correctness per
participant, with pre-test performance as a covariate and condition as a fixed factor. A Shapiro-Wilk test was conducted
on the residuals to check the normality assumption, which was not violated (𝑊 = .993, 𝑝 = .137). Holm-Bonferroni
corrections [42, 76] were used to adjust for multiple comparisons across our eight hypotheses and planned analyses
related to learning. Adjusted p-values are reported wherever a correction was applied. For accuracy, we again used
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Fig. 4. Main results. Marginal means of human learning (post-intervention performance, controlled for pre-intervention performance)
and accuracy accross different conditions. Error bars represent one standard error. Significance levels after Holm-Bonferroni correction
are presented only for significant (or marginally significant) differences, indicated by: * p < 0.05, ** p < 0.01, *** p < 0.001.

ANCOVA, this time on the average correctness during the intervention. Pre-test performance was included as a covariate
due to its significant correlation with intervention question performance, while condition was treated as a fixed factor.
Subjective measures were analyzed using ANOVA, with condition as the fixed factor. Post-hoc pairwise comparisons
between conditions were corrected using Holm-Bonferroni method to account for multiple hypotheses. Throughout
the results, we report effect sizes using Cohen’s 𝑑 along with 95% confidence intervals. Effect sizes and accompanying
confidence intervals provide valuable information, particularly when interpreting results where we hypothesize no
significant differences. When the confidence interval for an effect size includes 0, it suggests that the true effect could
be negligible or even nonexistent [23, 52, 85]. For correlations, Pearson’s 𝑟 is provided.

7 RESULTS

7.1 Main results

7.1.1 Human Learning. Main results for learning are depicted in Figure 4a. We report adjusted p-values, corrected with
Holm-Bonferroni to account for multiple comparisons. As hypothesized (H-L1a & H-L1b), participants experienced
statistically significantly greater learning in the contrastive predicted (𝑀 = 0.47, 𝐹1,209 = 38.62, 𝑝 = 0.00004, 𝑑 =

0.65 [0.37, 0.94]) and contrastive after (𝑀 = 0.43, 𝐹1,216 = 26.68, 𝑝 = 0.006, 𝑑 = 0.47 [0.19, 0.74]) conditions compared to
participants in the no AI condition (𝑀 = 0.32).

Participants in the contrastive random condition also showed significantly higher gains than those in the no AI
condition (𝑀 = 0.41, 𝐹1,230 = 23.42, 𝑝 = 0.02, 𝑑 = 0.40 [0.13, 0.67]). Conversely, participants in the unilateral condition
did not signficantly improve their learnring compared to no AI (𝑀 = 0.39, 𝐹1,222 = 29.66, 𝑝 = 𝑛.𝑠., 𝑑 = 0.30 [0.03, 0.57]).

Comparing contrastive conditions with sensible foil to unilateral explanations, as hypothesized (H-L2a), participants
in the contrastive predicted condition (𝑀 = 0.47) learned statistically significantly more than participants in the unilateral
condition (𝑀 = 0.39, 𝐹1,260 = 40.99, 𝑝 = 0.02, 𝑑 = 0.35 [0.11, 0.60]). However, the difference between contrastive after

(𝑀 = 0.43) and unilateral explanations was not significant (𝐹1,267 = 33.05, 𝑝 = 𝑛.𝑠., 𝑑 = 0.16 [−0.08, 0.40]), not lending
support to H-L2b.

Within the contrastive conditions, participants in the contrastive predicted condition demonstrated greater learning
(𝑀 = 0.47) compared to those in the contrastive random condition (𝑀 = 0.41). However, this difference was only
marginally significant (𝐹1,268 = 31.82, 𝑝 = 0.09, 𝑑 = 0.26 [0.02, 0.50]), offering partial support for hypothesis H-L3.
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Addressing research question RQ-L1, the contrastive predicted condition did not result in significantly different learning
compared to the contrastive after condition (𝑀 = 0.43, 𝐹1,254 = 41.44, 𝑝 = 𝑛.𝑠., 𝑑 = 0.18 [−0.07, 0.43]).

7.1.2 Accuracy and Overreliance. Figure 4b summarizes results of human accuracy on the decision task with different
conditions. As hypothesized (H-A1a & H-A1b), the accuracy of participants in the contrastive predicted (𝑀 = 0.56,
𝐹1,260 = 20.04, 𝑝 = 𝑛.𝑠., 𝑑 = −0.15 [−0.39, 0.10]) and contrastive after (𝑀 = 0.57, 𝐹1,267 = 9.13, 𝑝 = 𝑛.𝑠., 𝑑 =

−0.08 [−0.32, 0.16]) conditions was not significantly different from that of participants in the unilateral condition
(𝑀 = 0.58).

While participants improved their performance on the task significantly on average when they received AI support
(𝑀 = 0.56) compared to receiving no AI support (𝑀 = 0.31, 𝐹1,627 = 195.32, 𝑝 << 0.0001), their performance also
significantly degraded when AI suggestions were suboptimal (𝑀 = 0.14) compared to receiving no support (𝑀 = 0.29,
𝐹1,627 = 36.34, 𝑝 << 0.0001). Note that the different means for no AI support (𝑀 = 0.31,𝑀 = 0.29) in this analysis occur
because we split the performance of participants in the no AI condition based on whether AI, if provided, would have
been correct or incorrect, to allow a fairer comparison with other conditions that received incorrect suggestions for
only a subset of questions.

In situations when AI provided a suboptimal recommendation, participants in the contrastive predicted (𝑀 = 0.58,
𝐹1,260 = 6.53, 𝑝 = 𝑛.𝑠., 𝑑 = 0.03 [−0.22, 0.27]) and contrastive random (𝑀 = 0.54, 𝐹1,281 = 3.83, 𝑝 = 𝑛.𝑠., 𝑑 =

−0.12 [−0.35, 0.12]) exhibited similar overreliance as those in the unilateral condition (𝑀 = 0.58), addressing RQ-A1.
Similarly, presenting contrastive explanations immediately (contrastive predicted), resulted in similar overreliance

(𝑀 = 0.58) compared to presenting contrastive explanations after a decision was made (contrastive after) (𝑀 = 0.59,
𝐹1,254 = 10.61, 𝑝 = 𝑛.𝑠., 𝑑 = −0.01 [−0.25, 0.24]).
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7.1.3 Subjective Experience. Subjective results are summarized in Figure 6.
Condition was a significant predictor of perceived competence (𝐹4,618 = 6.40, 𝑝 << 0.00005). A Holm-Bonferroni

corrected post-hoc test revealed that participants in the contrastive predicted, contrastive random, and unilateral conditions
reported significantly higher competence compared to those in the contrastive after and no AI conditions.

Perceived autonomy (i.e., choice) was also significantly predicted by condition (𝐹4,618 = 8.85, 𝑝 << 0.00001). A
Holm-Bonferroni corrected post-hoc test revealed that participants in the contrastive predicted, contrastive random, and
no AI conditions perceived significantly higher autonomy compared to those in the unilateral and contrastive after

conditions.
Condition was also a significant predictor of relatedness to AI (computed only for conditions involving AI) (𝐹3,533 =

9.02, 𝑝 << 0.00001), with a Holm-Bonferroni post-hoc test revealing that participants in the contrastive after condition
felt significantly less related to the AI compared to those in other AI conditions.

Task enjoyment/interest was not significantly predicted by condition (𝐹4,618 = 1.66, 𝑝 = 𝑛.𝑠.) and neither was mental
demand (𝐹4,618 = 0.47, 𝑝 = 𝑛.𝑠.).

Across measures, the subjective results support H-S2, showing that contrastive explanations with a predicted foil
led to significantly higher perceptions of competence, autonomy, and relatedness to the AI compared to the contrastive
after condition. Additionally, our findings partially support H-S1: while contrastive explanations with a predicted
foil significantly increased perceived autonomy compared to unilateral explanations, no significant differences were
observed for competence and relatedness to the AI.

7.1.4 Subjective vs. objective measures. Figure 7 shows the relationship between subjective experience and objective
outcomes across conditions with AI support (i.e. , no AI condition was not included in the analysis). Our analysis
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Fig. 8. Auditing for intervention generated inequalities: Learning (marginal means) for different individual differences. Error bars
represent one standard error. Significance levels after Holm-Bonferroni correction are indicated by: * p < 0.05.

revealed that there was no correlation between actual learning and competence, autonomy, or mental demand and that
actual learning was very weakly inversely correlated with relatedness to AI (𝑟 = −0.08, 𝑝 = 0.06) and task enjoyment
(𝑟 = −0.09, 𝑝 = 0.04). Accuracy was significantly positively correlated with relatedness to AI (𝑟 = 0.26, 𝑝 << 0.0001), a
construct that included questions about trust in AI too, and it was significantly negatively correlated with perceived
autonomy (𝑟 = −0.15, 𝑝 = 0.0003). Similarly, overreliance was significantly positively correlated with relatedness to AI
(𝑟 = 0.22, 𝑝 << 0.0001), and significantly negatively correlated with perceived autonomy (𝑟 = −0.15, 𝑝 = 0.0006). In
addition, overreliance was significantly positively correlated with task enjoyment (𝑟 = 0.1, 𝑝 = 0.02).

7.2 Audit for intervention-generated inequalities

Intervention-generated inequalities occur when an intervention, while beneficial on average, disproportionately benefits
some groups over others [57]. Disaggregating results by relevant demographics or variables can help uncover these
disparities. Informed by prior research in AI-assisted decision-making [10, 31], we conduct a self-audit and examine
whether contrastive explanations, introduced as interventions to enhance human decision-making skills, benefit different
groups equally.

Previous studies have shown that individual differences in information processing can significantly impact the
effectiveness of AI support and interventions, particularly for cognitively demanding outcomes like learning. One
individual difference that may affect the effectiveness of our interventions is Need for Cognition (NFC), a stable trait
that reflects an individual’s motivation to engage in deep thinking and information processing [16]. NFC has been
consistently identified as a predictor of performance in cognitive tasks such as problem-solving and decision-making [17].
In the context of AI-assisted decision-making, NFC has been found to influence whether cognitive forcing reduces
overreliance on AI [13] and how effectively individuals learn from AI assistance [14, 31].

Another important individual difference that we reasoned would be particularly relevant for interventions that
require consideration of multiple viewpoints is Actively Open-Minded Thinking (AOT). People high in AOT are more
likely to critically evaluate new evidence, weigh it against their existing beliefs, take sufficient time to solve problems,
and carefully consider others’ opinions when forming their own [6, 37]. We investigate whether individuals with
varying levels of AOT benefit differently from contrastive explanations, which provide alternative “viewpoints” for
consideration.

Figures 8a and 8b depict results disaggregated by NFC and AOT. We did not find any significant differences among
the effectiveness of (any) contrastive explanations for people with different levels of NFC (for detailed ananlyses see
Appendix, Table 2). However, our findings reveal a notable contrast in the AOT groups: participants with high AOT
benefited significantly more from the contrastive predicted condition (𝑀 = 0.52) compared to those with low AOT
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(𝑀 = 0.42; 𝐹1,122 = 6.67, 𝑝 = 0.01, 𝑑 = 0.47 [0.11, 0.84]). Similarly, the contrastive random condition was more effective
for individuals with high AOT (𝑀 = 0.46) than for those with low AOT (𝑀 = 0.42; 𝐹1,142 = 3.77, 𝑝 = 0.05, 𝑑 = 0.34
[−0.01, 0.68]), although the difference was only marginally significant (see Table 1 for non-significant conditions). These
findings uncover AOT as a relevant individual difference to consider in AI-assisted decision-making and reveal that
contrastive explanations may unevenly impact individuals, offering greater advantages to those with higher AOT.

8 DISCUSSION

Recent evidence suggests that while AI decision-support tools often enhance decision accuracy in the moment, they
can impede the long-term development of individuals’ decision-making skills [14, 31], even when the explanations
they provide contain potentially valuable learning opportunities. Human decision-making skills are crucial not only
for making informed independent decisions but also for critically evaluating AI-generated outputs. In this work, we
investigated whether AI decision support systems that account for the decision-maker’s mental model of the task can
simultaneously enhance decision accuracy and promote the development of independent decision-making skills.

8.1 On the effectiveness of contrastive explanations in improving human-AI decision-making outcomes

Grounded on social science research [56, 64], we introduced a framework for generating human-centric contrastive
explanations, which accounts for human reasoningwhen constructing the explanations. These human-centric contrastive
explanations compare AI’s choice to a predicted, likely human response for the same decision task, by highlighting only
the dimensions where the two differ (if they differ). We hypothesized that such contrastive explanations, in which the
foil (contrast case) is the predicted average human answer, will lead to greater human learning than the conventional
unilateral explanations, which are AI-centric and explain why the AI made a specific choice without considering the
decision-maker’s point of view.

As expected, our results showed that participants learned significantly more with contrastive explanations with
predicted foil compared to unilateral explanations (H-L2a) or no AI support (H-L1a) (Figure 4a). Moreover, also as
hypothesized (H-A1a), this improvement in learning was achieved without sacrificing accuracy: participants completing
the task with contrastive explanations with predicted foil were as accurate as their counterparts who received unilateral
explanations (Figure 4b). Additionally, participants in the contrastive explanations with predicted foil condition reported
significantly greater perceived autonomy (but not competence or relatedness to AI) during the task compared to those
in the unilateral condition, providing partial support for HS-1.

The contrastive after condition, where participants received contrastive explanations after making an initial decision
(inputted foil), led to significant learning gains compared to receiving no AI support (lending support to H-L1) but not
significantly different learning compared to unilateral explanations (not supporting H-L2b). As expected (H-A1b),
participants’ accuracy in the contrastive after condition was not significantly different from those in the unilateral
condition.

Overall, our research provides compelling evidence that contrastive explanations with predicted foils significantly
enhance decision-making skills without sacrificing decision accuracy compared to unilateral explanations, which
remain the default explanation design in AI-powered decision support. Our study is the first to demonstrate that even
when AI offers decision recommendations (rather than explanations alone [14, 31]), users can still cognitively engage
with its content and improve their learning about the task when this content is engaging. This finding opens new
possibilities for optimizing AI decision-support systems by intervening not only at the interaction level, as previous work
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suggests [12–14, 94], but also at the content level of the explanations themselves to improve human-AI decision-making
outcomes.

Lastly, while contrastive explanations with predicted foil improved human decision-making skills, we do not think
they are a panacea for human-AI decision-making. For example, our results showed that contrastive explanations (as
well as unilateral explanations) still resulted in significant overreliance on AI. Also, they were signficantly more effective
for people high in AOT (who are inherently driven to consider multiple viewpoints) compared to those low in AOT.
Instead, we believe that contrastive explanations are useful when shown in the right situations, such as when the AI is
confident about its decision, and to people who benefit from them (e.g., those high in AOT). As such, these explanations
expand the suite of human-AI interaction techniques that can be adaptively selected in appropriate situations to optimize
human-AI decision-making outcomes, like decision accuracy and human learning [7, 14, 84].

8.2 What have we learned about the design of contrastive explanations?

Our results provide evidence about which aspects of contrastive explanations matter for objective and subjective
outcomes in human-AI decision making.

First, as hypothesized (H-S2), our findings show that interaction design matters for subjective experience: contrastive
explanations are as effective in objective measures when the foil is predicted as they are when the foil is inputted (the
contrastive after condition) — even though the inputted foil is the “perfect” comparison. However, consistent with
prior research [10, 30], our results show that providing contrastive explanations after people make their own decisions
(input their foil) results in significantly lower subjective experience, even if that advice engages with their own input
as in contrastive explanations after condition. We found no differences in subjective experience between contrastive
explanations with a predicted foil and those with a random foil, suggesting that the contrastive design, applied before a
decision is made, is perceived favorably regardless of the foil’s quality.

Second, our results show suggestive evidence that quality of the foil matters for improving learning as the objective
outcome of the interaction. When contrastive explanations are presented at the decision-making time, high quality foil
such as in contrastive predicted resulted in greater learning on average compared to a randomly selected foil, albeit
the difference was only marginally significant, partially supporting HL-3. We believe that one of the reasons why the
difference between these two conditions is not more pronounced in our study is that even a “random” foil in our setting
is relatively reasonable. A randomly selected exercise from the list still addresses at least part of the needs or preferences
of the fictitious character, rendering it a choice worth considering. We believe that in different situations, such as
medical treatment decisions, where the choices may consist of a wide variety of treatments for a wide array of diseases,
a randomly selected choice would likely be obviously ineffective or harmful, thus a waste of cognitive resources for
the clinician to consider. In addition, we believe there is room to further improve the quality of the predicted foil. In
our implementation, the foil was generated using a single model that predicted the average human response across all
decision-makers. We believe that employing personalized models, which capture each individual’s unique mental model
of the task, could result in even more accurate foils and, consequently, lead to greater learning gains. Our analysis of the
participants’ responses used to train the human model revealed high variability in exercise choices across participants
(Appendix A.2.2), further supporting the need for personalized models. Future research should investigate how to best
fine-tune models to individuals and assess the added value of personalized models compared to average human models
for enhancing downstream human-AI decision outcomes.

In this study, we sought to deepen our understanding of the timing of contrastive explanations and the impact of
foil quality. We experimented with a simple, intuitive design in which the foil represented the choice of many people,
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while the fact reflected the AI’s suggestion in the user interface. However, contrastive reasoning can be conveyed
in various other forms. For example, two conversational agents—one advocating for the human model’s choice and
the other for the AI’s—could engage in a dialogue, allowing the decision-maker to assess which agent’s reasoning is
more compelling. Alternatively, designs could focus solely on contrastive dimensions, rather than the fact and foil, by
highlighting aspects of the decision that the human decision-maker may be overlooking. This approach could provide
insights as intermediate support without offering a direct recommendation (e.g., cardio supports weight loss goals).
Having demonstrated the effectiveness of one human-AI contrastive design in promoting learning, we believe future
research should explore a wider range of design possibilities for representing human-AI misalignment in even more
impactful ways.

8.3 What have we learned about the effects of contrastive explanations on overreliance?

Evidence from prior work suggested that presenting more than one AI suggestion (i.e., a “second opinion”) to people
may reduce their overreliance, as it makes them more likely to consider alternatives [5, 58]. Our results showed that
participants in contrastive explanations conditions (with predicted or random foils) exhibited similar rates of overreliance
on AI suggestions as those in unilateral condition (RQ-A1). We believe that we may not be observing the beneficial
effect of second opinion in our study because in situations when the simulated AI provided incorrect recommendations
(i.e., when the “fact” was a suboptimal choice), the foil was an even worse choice. Therefore, participants were primed
to contrast two suboptimal choices and resorted to the better choice out of the two. Future work should explore whether
contrastive explanations would still result in similar overreliance, when the foil is a better alternative than the fact.

Interestingly, we also found that participants’ overreliance rate on AI in contrastive after condition was similar to
that of the unilateral condition. This contrasts with prior research showing that providing unilateral explanations after
an initial decision reduces overreliance [13, 34], as people are less likely to follow incorrect AI advice once they have
made a decision. In our study, because contrastive explanations directly addressed participants’ decision and provided
evidence as to why their choice was inferior to the AI’s, they seemed more persuasive, potentially diminishing the
positive effect of the cognitive forcing.

8.4 What have we learned about intrinsic motivation in AI-assisted decision-making?

Wemeasured participants’ perceived competence, autonomy, and relatedness to AI as psychological needs underpinning
individuals’ intrinsic motivation about a task. Our results demonstrate that both interaction and explanation design
significantly impact these constructs. First, as hypothesized H-S2, we found that the contrastive after condition—in
which contrastive explanations “critiqued” individuals’ inputted answer and presented evidence that AI’s choice was
superior—led to significantly lower perceived competence, autonomy and relatedness to AI compared to situations
in which contrastive explanations were presented before a decision was made. Second, our results demonstrated that
contrastive explanations provided before a decision (whether using a predicted or random foil), which presented two
decision choices, led to significantly higher perceived autonomy in task completion—comparable to participants who
received no AI support—compared to unilateral explanations that offered only a single option.

Our analysis of intrinsic motivation constructs and objective outcomes revealed that actual learning was not correlated
with perceived competence. Increased perceived autonomy was correlated with reduced overreliance but also with
lowered accuracy, while stronger perceptions of relatedness to the AI were correlated with greater overreliance on AI
and higher accuracy.
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These findings suggest that the design of AI support can significantly influence people’s intrinsic motivation toward a
task, as well as objective outcomes such as accuracy and overreliance. We believe that when developing new AI-assisted
decision-making systems, researchers should carefully consider and measure how these designs affect people’s intrinsic
motivation about the task in addition to the objective outcomes of the interaction.

8.5 Generalizability & Limitations

We conducted a single controlled experiment with a single task and with crowdworkers. While prior prior research
on AI-assisted decision-making suggests that experts often exhibit similar behavior to non-experts when relying on
AI systems [32], we do not know whether this holds for learning from the AI about a task of their expertise. Jacobs
et al. [43] show that clinicians would prefer a system that explains why AI’s choice differed from the established
clinical guidelines, which suggests they may be open for learning from the AI. Our task choice had inherent learning
opportunities (e.g., facts about exercises). Learning may not be as pronounced in some tasks, such as hiring, were
opportunities for learning exist but are sparser. Further research is needed to understand how generalizeable our
findings are for other tasks, domains, and settings.

We believe that our contrastive explanations framework can be effectively applied to a wide range of tasks and
settings. Its modular design allows for flexible adaptation based on specific contexts. For instance, in medical applications,
the foil could be derived from treatment guidelines, while in image-based tasks, the contrast module could compute pixel
gradients or concept activations [50] that highlight differences between the fact and foil. Similarly, the presentation
module can be customized to suit the task, such as employing tailored visualization techniques. However, we believe that
contrastive explanations—and by extension, our framework—are most valuable in multiclass classification or ranking
scenarios, where the foil is less obvious than in binary decision contexts.

An important consideration about our work is that we chose to implement the presentation module with a large
language model (LLM). We used the LLM to turn the scaffold produced by the rest of the modules into a natural language
explanation, while providing small gaps in the template for it to fill with domain facts. We believe the approach of
constraining the generation of facts within the constraints of more trusted predictive models may be useful for certain
settings, such as ours but may not generalize to expert-level domains where the LLM may not have the nuance to
fill in the gaps. Moreover, we iteratively arrived at prompts (included in the Appendix) which produced explanations
with almost no hallucinations. The first author of the paper reviewed the generations for all the characters included
in the experiment, finding the LLMs to only mix the indoor/outdoor preferences of characters at times, but no other
major hallucinations. However, such manual review cannot be scaled. We believe that our framework can be extended
to include a verification step for the generated explanations. For example, multiagent frameworks can be used with
additional agents reviewing the generated explanations.

Another limitation of our study is that, in order to control the AI’s mistakes, we chose to simulate the AI. We
introduced errors in four randomly selected questions during the intervention phase, where the AI’s suggestion was
generated by a human model rather than the expert model. This approach may have contributed to overreliance on the
AI, as the wrong AI suggestion was a likely human choice.

9 CONCLUSION

In this work, we investigated whether explanation designs that account for human reasoning can improve human
decision-making skills in the task in AI-assisted decision-making. We introduced a framework for generating human-
centric contrastive explanations by showing the difference between AI’s reasoning and a likely human response for
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the same task. Our results demonstrated that contrastive explanations significantly enhanced human decision-making
skills compared to unilateral explanations, the default method of AI support, without compromising accuracy. Sparking
hope about growing deskilling concerns, our work suggests that AI support that accounts for human mental models of
the task can be a promising approach toward systems that augment and upskill decision-makers.
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A APPENDIX

A.1 Task Design: Implementation details

A.1.1 Evaluating the expert model. We developed the objective function and expert model iteratively over multiple
discussion sessions with the expert. In each session, we evaluated the critical dimensions for inclusion in the model
and assessed its predictions, deciding whether to add or remove dimensions accordingly. Once we had decided the
structure of the g representation, the expert provided a total of 322 pairwise comparisons among exercises for 12 unique
fictitious characters. For learning the expert weights for the objective function f in Equation 1, we followed the approach
described in Section 4.5. Using the Scikit-learn library in Python, we trained a Support Vector Machine (SVM) model
with a linear kernel and a regularization parameter (C) set to 1.0. We evaluated the model’s performance using 12-fold
cross-validation, where each fold excluded one of the fictitious characters. The model was trained on the remaining
characters and tested on its ability to predict pairwise comparisons for the excluded character. The model achieved a
mean accuracy of 0.86 with a standard deviation of 0.08 across all folds. Additionally, the mean area under the ROC
curve (AUC) was 0.86. It is important to note that these results reflect pairwise comparisons involving the full set of 59
exercises, and not only the subset of 7 exercises with which we populated the drop-down list in the interface. For the
final step, we qualitatively assessed the model’s choices for new fictitious characters, confirming that the decisions
were sound and reasonable. (Providing additional validation that the model effectively captures expert reasoning about
the designed task, another self-identified kinesiology expert, who participated in one of our formative studies online,
achieved a 96% score in the task—significantly higher than the typical 32% average from crowds.)

A.1.2 Selecting the drop-down exercises. We sought to populate the drop-down list for the interface with a sensible
number of exercises that would not overwhelm the participants. To select a representative set of exercises from the
larger set of the 59 exercises, we clustered the exercises based on their similarity. We generated a large set of 300
fictitious characters, and scored each of the 59 exercises for each of the characters with the expert scoring function.
We then computed the correlations between the scores of the exercises and clustered them based on the similarity of
their score profiles using hierarchical clustering (as depicted in Figure 9. This method allowed us to group exercises
that received similar scores across the 300 characters into clusters. We applied agglomerative clustering with Ward’s
method. After generating the dendrogram, we determined an appropriate number of clusters by examining the level at
which the clusters remained distinct while minimizing redundancy across exercises.

To select representative exercises from each cluster, we calculated the centroid of each cluster, representing the
average score profile across all exercises in that group. From there, we selected the exercise whose score profile was
closest to the centroid and that was also a more common or accessible exercise (e.g., aerobics vs. trampoline jumping) ,
ensuring that the selected exercise would be a good representative of the group as a whole. A set of 7 representative
exercises (aerobics, bicycling, boxing, jog/walk combination, pilates, resistance training, swimming) was then used to
populate the drop-down list in the interface, providing a diverse but manageable selection that reflected the range of
exercise options without overwhelming participants with too many choices.

A.2 The Contrastive Explanation Framework: Implementation Details

A.2.1 Data collection study for training the human model. We conducted an online user study on Prolific for collecting
data with which to train the human model. The task and procedure were identical to those used in the main experiment,
but participants completed the task without AI assistance, as our goal was to capture the human mental model of
the task. In total, 20 participants answered 100 questions, with each participant selecting exercises for 5 characters,
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resistance training
calisthenics
fencing
rock or mountain climbing
pilates
yoga
soccer, casual
basketball
aerobics
martial arts, different types
volleyball
trampoline, competitive
bowling
curling
ethnic or cultural dancing
skating, ice
general dancing
surfing, body or board, competitive
canoeing, on camping trip
swimming
bicycling, mountain
rollerblading, moderate pace, exercise training
polo, on horseback
lacrosse
frisbee playing
jog/walk combination
horseback riding
cricket
kickball
skating, roller
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Fig. 9. Correlation heatmaps with hierarchical clustering that served as a basis to select the drop-down exercises for the interface.

randomly sampled from 30 unique characters (distinct from the characters used in the main experiment). Participants
achieved a mean accuracy of 30% on the task.

Figure 10 shows the distributions of exercise choices participants selected per fictitious character. To evaluate the
variability of participants’ responses in selecting exercises for different fictitious characters, we computed normalized
entropy [77] per fictitious character. High variability could signal differing decision strategies for the task, while
low variability would indicate stronger consensus and shared mental model. We selected normalized entropy as it
provides a robust measure of uncertainty, independent of the number of available categories, making it ideal for
comparing variability across different characters. With a computed mean normalized entropy of 𝜇 = 0.51, we found that
participants’ choices exhibited moderate variability, indicating that while some patterns emerged, responses remained
fairly distributed across exercise choices. The standard deviation of 𝜎 = 0.35 further showed notable fluctuation in
variability across characters, implying that certain fictitious characters elicited more consistent responses, whereas
others triggered more diverse decision-making. This analysis informed our evaluation of the human model, as we
expected a moderately, but not highly, accurate model given the variability of participants’ responses.
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Fig. 10. Distribution of participants’ responses for the 30 fictitious character in the data collection study.

A.2.2 Evaluating the human model. We trained the human model from the responses collected in the data collection
study and by following the same approach with which we learned the expert weights. The total 100 choices (each out of
7 exercises) from the data collection study, yielded a total of 600 pairwise exercise comparisons. As with the expert
model, we trained a Support Vector Machine (SVM) model with a linear kernel and a regularization parameter (C) set
to 1.0. We used a 30-fold cross-validation for evaluating the human model, where in each fold one participant was
removed from the training set. The model was then trained on the remaining participants and tested on the excluded
one. This process was repeated for all participants, allowing us to assess the model’s generalizability and its ability
to predict individual behavior across different subsets of the data. As expected from the high variance in participant
responses, the model was moderately accurate, with a mean cross-validation accuracy of 0.69 and an AUC of 0.68 for
the pairwise comparisons of exercises.

As an additional evaluation, we compared the human model to the expert model. We generated a new set of characters
to conduct the evaluation and found that 60% of the unseen 50 characters, both human and expert models produced
the same responses. The key differences emerged in specific exercise choices: the human model was less likely to
select boxing or aerobics, which the expert model identified as suitable for some characters. Despite the high variability
within and across participants, this demonstrates a “wisdom of the crowd” effect [82], where the average human model
captured signal across participants’ responses (achieved 60% accuracy on the task, compared to average participant
accuracy of 30%), resembling the expert model (an effect also observed in [35]). In the main study, for cases where
the human and expert models provided identical responses for the characters, we selected the second-highest-ranked
option from the human model as the human response (i.e., the foil).

A.3 LLM Prompts

The variables in double brackets were populated according to the character in question.

A.3.1 Contrastive Explanation Prompt.

[[vignette]]

Here are the aspects that a kinesiology expert considers when making the decision:
(1) Intensity: whether the intensity required to carry out an exercise exceeds the fitness capabilities of the

person.
(2) Intensity: whether an exercise matches the intensity the person is capable of exerting.
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(3) Goal: whether the exercise matches the person’s goals.
(4) Preference: whether the exercise matches the person’s preference.
According to the expert’s function, [[fact]] is better than [[foil]] on the following: [[positive_contributors_fact]].
Whereas, [[foil]] is better than [[fact]] because of: [[positive_contributors_foil]].
Construct an explanation about why [[fact]] is better than [[foil]] using the following template:
Make it compact. Go into bullet point(s) strictly only for concepts for which the fact is better than the
foil according to the expert’s function. Do not explicitly say anything about the expert. Acknowledge
the benefits of the foil over the fact if any as the first sentence, then highlight the tradeoffs in high-level
concepts at the beginning of the explanation.
Use the following structure for each bullet point, one by one, and include only the concepts for which
[[fact]] is superior to [[foil]]:
• Identify the primary characteristic of the superior exercise (e.g., running is a cardio exercise) and
contrast this to the other exercise.
• Connect this characteristic to a benefit relevant to the character (e.g., cardio is good for weight loss).
High-level sentence that first acknowledges the concepts for which the foil is better than the fact (if any)
or states that the foil is also a good choice, then highlights the concepts for which the fact is superior to
the foil. Include only the concepts for which [[fact]] is superior to [[foil]].
• Concept 1 (e.g., Goal):
• Concept 2: ...
Format the response as a JSON object:
"high_level_contrastive_explanation": "explanation", "contrast_concepts": [{"Formatted name of concept
(e.g., Goal)": "explanation"}].

A.3.2 Unilateral Explanation Prompt.

[[vignette]]

Here are the aspects that a kinesiology expert considers when making the decision:
(1) Intensity: whether the intensity required to carry out an exercise exceeds the fitness capabilities of the

person.
(2) Intensity: whether an exercise matches the intensity the person is capable of exerting.
(3) Goal: whether the exercise matches the person’s goals.
(4) Preference: whether the exercise matches the person’s preference.
Create a concise explanation for why [[fact]] is the best exercise for the specified character, using the
following structure in bullet points only for aspects the expert considers:
• Identify the primary characteristic of [[fact]] (e.g., running is a cardio exercise).
• Connect this characteristic to a benefit relevant to the character (e.g., cardio is beneficial for weight
loss).

Strictly only include aspects recognized by the expert as beneficial for the character, omitting any for
which [[fact]] may not be optimal or relevant. Do not explicitly say anything about the expert. Use the
terms Goal, Intensity, and Preference when describing the relevant ’concept’.
Format the response as a list of JSON records with ’concept’ and ’explanation’ as the keys for the
records.
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A.4 Post-studyQuestionnaire

Perceived Competence (Adapted from the Intrinsic Motivation Inventory (IMI)).

• I think I performed well in making exercise recommendations during this task.
• This was a task that I couldn’t do very well. (reverse Likert)
• I believe I am skilled at suggesting suitable exercises for different individuals.
• After working at this task for a while, I felt pretty competent.

Perceived Choice (Adapted from IMI).

• I felt like I had a lot of choice in deciding which exercises to recommend.
• I was free to choose the exercises I thought were best suited for the person described.
• I felt like I was strongly influenced by the AI on how to recommend exercises. (reverse Likert)
• I recommended exercises in the way I wanted to.

Relatedness to AI (Adapted from IMI).

• I felt I could trust this AI.
• I felt my reasoning on this task was distant from the AI’s. (reverse Likert)
• I would like a chance to interact with this AI in the future.

Interest/Enjoyment (Adapted from IMI).

• I enjoyed this exercise recommendation task.
• This task did not hold my attention at all. (reverse Likert)
• While I was doing this task, I was thinking about how much I enjoyed it.
• I thought this exercise recommendation task was a boring task. (reverse Likert)

Mental Demand.

• I found this task mentally demanding.

A.5 Results: Audit for Intervention-Generated Inequalities

Condition High AOT (SE) Low AOT (SE) Significance Effect Size (d [CI])
contrastive after 0.42 (0.03) 0.41 (0.03) 𝐹1,127 = 0.07, 𝑝 = 𝑛.𝑠. 0.05 [-0.31, 0.40]
unilateral 0.40 (0.03) 0.38 (0.03) 𝐹1,134 = 0.30, 𝑝 = 𝑛.𝑠. 0.09 [-0.24, 0.43]
contrastive random 0.46 (0.03) 0.38 (0.03) 𝐹1,142 = 3.77, 𝑝 = 0.05 0.34 [-0.01, 0.68]
contrastive predicted 0.52 (0.03) 0.42 (0.03) 𝐹1,122 = 6.67, 𝑝 = 0.01 0.47 [0.11, 0.84]
no AI 0.34 (0.03) 0.31 (0.03) 𝐹1,83 = 0.64, 𝑝 = 𝑛.𝑠. 0.17 [-0.26, 0.61]

Table 1. ANCOVA results by condition for AOT groups, showing marginal means (SE), Significance (F-statistic, p-value), and Effect
size (Cohen’s d with 95% confidence intervals).
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Condition High NFC (SE) Low NFC (SE) Significance Effect Size (d [CI])
contrastive after 0.43 (0.03) 0.41 (0.03) 𝐹1,127 = 0.11, 𝑝 = 𝑛.𝑠. 0.06 [-0.29, 0.41]
unilateral 0.40 (0.03) 0.38 (0.03) 𝐹1,134 = 0.20, 𝑝 = 𝑛.𝑠. 0.08 [-0.26, 0.42]
contrastive random 0.42 (0.03) 0.42 (0.03) 𝐹1,142 = 0.02, 𝑝 = 𝑛.𝑠. 0.02 [-0.30, 0.35]
contrastive predicted 0.49 (0.03) 0.47 (0.03) 𝐹1,122 = 0.35, 𝑝 = 𝑛.𝑠. 0.11 [-0.25, 0.46]
no AI 0.34 (0.03) 0.31 (0.03) 𝐹1,83 = 0.28, 𝑝 = 𝑛.𝑠. 0.11 [-0.32, 0.55]

Table 2. ANCOVA results by condition for NFC groups, showing marginal means (SE), Significance (F-statistic, p-value), and Effect
size (Cohen’s d with 95% confidence intervals).
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