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ABSTRACT
Explainable artificially intelligent (XAI) systems form part of so-
ciotechnical systems, e.g., human+AI teams tasked with making
decisions. Yet, current XAI systems are rarely evaluated by measur-
ing the performance of human+AI teams on actual decision-making
tasks. We conducted two online experiments and one in-person
think-aloud study to evaluate two currently common techniques for
evaluating XAI systems: (1) using proxy, artificial tasks such as how
well humans predict the AI’s decision from the given explanations,
and (2) using subjective measures of trust and preference as predic-
tors of actual performance. The results of our experiments demon-
strate that evaluations with proxy tasks did not predict the results of
the evaluations with the actual decision-making tasks. Further, the
subjective measures on evaluations with actual decision-making
tasks did not predict the objective performance on those same tasks.
Our results suggest that by employing misleading evaluation meth-
ods, our field may be inadvertently slowing its progress toward
developing human+AI teams that can reliably perform better than
humans or AIs alone.

CCS CONCEPTS
• Human-centered computing → Interaction design; Empiri-
cal studies in interaction design.
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1 INTRODUCTION
Because people and AI-powered systems have complementary
strengths, many expected that human+AI teams would perform
better on decision-making tasks than either people or AIs alone [1,
21, 22]. However, there is mounting evidence that human+AI teams
often perform worse than AIs alone [16, 17, 28, 34].

We hypothesize that this mismatch between our field’s aspira-
tions and the current reality can be attributed, in part, to several
pragmatic decisions we frequently make in our research practice.
Specifically, although our aspiration is formulated at the level of
sociotechnical systems , i.e., human+AI teams working together to
make complex decisions, we often make one of two possible critical
mistakes: (1) Rather than evaluating how well the human+AI team
performs together on a decision-making task, we evaluate by using
proxy tasks, how accurately a human can predict the decision or
decision boundaries of the AI [13, 27, 29, 34]. (2) We rely on sub-
jective measures of trust and preference, e.g., [35, 36, 44], instead of
objective measures of performance. We consider each of these two
concerns in turn.

First, evaluations that use proxy tasks force study participants
to pay attention to the AI and the accompanying explanations—
something that they are unlikely to do when performing a realistic
decision-making task. Cognitive science provides compelling evi-
dence that people treat cognition like any other form of labor [24]
and favor less demanding forms of cognition, i.e., heuristics over
analytical thinking, even in high stakes contexts like medical diag-
nosis [31]. Therefore, we hypothesize that user performance and
preference on proxy tasks may not accurately predict their perfor-
mance and preference on the actual decision-making tasks where
their cognitive focus is elsewhere and they can choose whether and
how much to attend to the AI.

Second, subjective measures such as trust and preference have
been embraced as the focal point for the evaluation of explainable
systems [35, 36, 44], but we hypothesize that subjective measures
may also be poor predictors of the ultimate performance of people
performing realistic decision-making tasks while supported by ex-
plainable AI-powered systems. Preference and trust are important
facets of explainable AI systems: they may predict users’ intent
to attend to the AI and its explanations in realistic tasks settings
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and adhere to the system’s recommendations. However, the goal of
explainable interfaces should be instilling in users the right amount
of trust [10, 32, 33]. This remains a remarkable challenge, as on one
end of the trust spectrum users might over-rely on the system and
remain oblivious of its errors, whereas on the other end they might
exhibit self-reliance and ignore the system’s correct recommenda-
tions. Furthermore, evaluating an AI’s decision, its explanation of
that decision, and incorporating that information into the decision-
making process requires cognitive effort and the existing evidence
suggests that preference does not predict performance on cognitive
tasks [8, 12, 37].

To evaluate these two hypotheses, we conducted two online
experiments and one in-person study of an AI-powered decision
support system for a nutrition-related decision-making task. In
one online study we used a proxy task, in which participants were
asked to predict the AI’s recommendations given the explanations
produced by the explainable AI system. In the second online study,
participants completed an actual decision-making task: actually
making decisions assisted by the same explainable AI system as in
the first study. In both studies, we measured participants’ objective
performance and collected subjective measures of trust, preference,
mental demand, and understanding. In the in-person study, we used
a think-aloud method to gain insights into how people reason while
making decisions assisted by an explainable AI system. In each
study, we presented participants with two substantially distinct
explanation types eliciting either deductive or inductive reasoning.

The results of these studies indicate that (1) subjective measures
from the proxy task do not generalize to the actual decision-making
task, and (2) when using actual decision-making tasks, subjective
results do not predict objective performance results. Specifically,
participants trusted and preferred inductive explanations in the
proxy task, whereas they trusted and preferred the deductive ex-
planations in the actual task. Second, in the actual decision-making
task, participants recognized AI errors better with inductive expla-
nations, yet they preferred and trusted the deductive explanations
more. The in-person think-aloud study revealed insights about
why participants preferred and trusted one explanation type over
another, but we found that by thinking aloud during an actual
decision-making task, participants may be induced to exert ad-
ditional cognitive effort, and behave differently than they would
during an actual decision-making task when they are, more realis-
tically, not thinking aloud.

In summary, we show that the results of evaluating explain-
able AI systems using proxy tasks may not predict the results of
evaluations using actual decision-making tasks. Users also do not
necessarily perform better with systems that they prefer and trust
more. To draw correct conclusions from empirical studies, explain-
able AI researchers should be wary of evaluation pitfalls, such as
proxy tasks and subjective measures. Thus, as we recognize that
explainable AI technology forms part of sociotechnical systems,
and as we increasingly use these technologies in high-stakes sce-
narios, our evaluation methodologies need to reliably demonstrate
how the entire sociotechnical systems (i.e., human+AI teams) will
perform on real tasks.

2 RELATEDWORK
2.1 Decision-making and Decision Support

Systems
Decision-making is a fundamental cognitive process that allows
humans to choose one option or course of action from among a set
of alternatives [42, 43, 45]. Since it is an undertaking that requires
cognitive effort, people often employmental shortcuts, or heuristics,
when making decisions [40]. These heuristics save time and effort,
and frequently lead to good outcomes, but in some situations they
result in cognitive biases that systematically lead to poor decisions
(see, e.g., [4]).

To help people make good decision reliably, computer-based De-
cision Support Systems (DSS) have been used across numerous dis-
ciplines (e.g., management [15], medicine [20], justice [47]). While
DSS have been around for a long time, they are now increasingly
being deployed because the recent advancements in AI enabled
these systems to achieve high accuracy. But since humans are the
final arbiters in decisions made with DSS, the overall sociotechincal
system’s accuracy depends both on the system’s accuracy and on
the humans and their underlying cognitive processes. Research
shows that even when supported by a DSS, people are prone to
insert bias into the decision-making process [16].

One approach for mitigating cognitive biases in decision-making
is to use cognitive forcing strategies, which introduce self-awareness
and self-monitoring of decision-making [7]. Although not univer-
sally effective [38], these strategies have shown promising results as
they improve decision-making performance, both if the human is as-
sisted [17, 34] or is not assisted by a DSS [31]. To illustrate, Green &
Chen [17] showed that across different AI-assisted decision-making
treatments, humans performed best when they had to make the
preliminary decision on their own first before being shown the
system recommendation (which forced them to engage analytically
with the system’s recommendation and explanation if their own
preliminary decision differed from that offered by the system). Even
though conceptual frameworks that consider cognitive processes
in decision-making with DSS have been proposed recently [41],
further research is needed to thoroughly investigate how to incor-
porate DSS into human decision-making and the effect of cognitive
processes while making system-assisted decisions.

2.2 Evaluating AI-Powered Decision Support
Systems

Motivated by the growing number of studies in interpretable and
explainable AI-powered decision support systems, researchers have
called for more rigorous evaluation of explainable systems [9, 14,
19]. Notably, Doshi-Velez & Kim [9] proposed a taxonomy for eval-
uation of explainable AI systems, composed of the following cate-
gories: application grounded evaluation (i.e., domain experts evalu-
ated on actual tasks), human grounded evaluation (i.e., lay humans
evaluated on simplified tasks) and functionally grounded evalua-
tion (i.e., no humans, proxy tasks). To put our work into context,
our definition of the actual task falls into application grounded
evaluation, where people for whom the system is intended (i.e., not
necessarily experts) are evaluated on the intended task. Whereas,
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the the proxy task is closer to human grounded evaluation but ad-
dresses both domain experts and lay people evaluated on simplified
tasks, such as the simulation of model’s prediction given an input
and an explanation.

Studies using actual tasks evaluate the performance of human
and the system, as a whole, on the decision-making task [3, 17, 23,
46]. In these studies, participants are told to focus on making good
decisions and it is up to them to decide whether and how to use
the AI’s assistance to accomplish the task. In contrast, studies that
use proxy tasks evaluate how well users are able to simulate the
model’s decisions [6, 13, 27, 34] or decision boundaries [29]. In such
studies, participants are specifically instructed to pay attention
to the AI. These studies evaluate the human’s mental model of
the system when the human is actively attending to the system’s
predictions and explanations, but do not necessarily evaluate how
well the human is able to perform real decision-making tasks with
the system. For example, to identify which factors make a model
more interpretable, Lage et al. ask participants to simulate the
interpretable model’s predictions [27].

In addition to the evaluation task, the choice of evaluation met-
rics is a critical one for the correct evaluation of intelligent sys-
tems [2]. In explainable AI literature, subjective measures, such
as user trust and experience, have been largely embraced as the
focal point for the evaluation of explainable systems [35, 36, 44, 48].
Hoffman et al. [19] proposed metrics for explainable systems that
are grounded in the subjective evaluation of a system (e.g., user
satisfaction, trust, and understanding). These may take the form
of questionnaires on attitude and confidence in the system [18]
and helpfulness of the system [5, 26]. However, while these mea-
sures are informative, evidence suggests they do not necessarily
predict user’s performance with the system. For example, Green
& Chen [16] discovered that self-reported measures could be mis-
leading, since participant’s confidence in their performance was
negatively associated with their actual performance. Similarly, Lai
& Tan [28] found that humans cannot accurately estimate their
own performance. More closely related to our findings, Poursabzi-
Sangdeh et al. [34] observed that even though participants were
significantly more confident on the predictions of one model over
the other, their decisions did not reflect the stated confidence. Fur-
thermore, Lakkaraju & Bastani [30] demonstrated that participants
trusted the same underlying biased model almost 10 times more
when they were presented with misleading explanations compared
to the truthful explanations that revealed the model’s bias. These
findings indicate that not only are subjective measures poor predic-
tors of performance, but they can easily be manipulated and lead
users to adhere to biased or malicious systems.

3 EXPERIMENTS
We conducted experiments with two different evaluation tasks and
explanation designs to test the following hypotheses:
H1: Results of widely accepted proxy tasks, where the user is asked
to explicitly engage with the explanations, may not predict the
results of realistic settings where the user’s focus is on the actual
decision-making task.
H2: Subjective measures, such as self-reported trust and preference

with respect to different explanation designs, may not predict the
ultimate human+AI performance.

3.1 Proxy Task
3.1.1 Task Description. We designed the task around nutrition be-
cause it is generally accessible and plausibly useful in explainable
AI applications for a general audience. Participants were shown a
series of 24 images of different plates of food. The ground truth of
the percent fat content was also shown to them as a fact. Partici-
pants were then asked: “What will the AI decide?” given that the
AI must decide “Is X% or more of the nutrients on this plate fat?”.
As illustrated in Figure 1, each image was accompanied by explana-
tions generated by the simulated AI. The participants chose which
decision they thought the AI would make given the explanations
and the ground truth.

We designed two types of explanations, eliciting either inductive
or deductive reasoning. In inductive reasoning, one infers general
patters from specific observations. Thus, for the inductive explana-
tions, we created example-based explanations that required partici-
pants to recognize the ingredients that contributed to fat content
and draw their own conclusion about the given image. As shown in
Figures 1a, the inductive explanations began with “Here are exam-
ples of plates that the AI knows the fat content of and categorizes
as similar to the one above.” Participants then saw four additional
images of plates of food. In deductive reasoning, in contrast, one
starts with general rules and reaches a conclusion with respect
to a specific situation. Thus, for the deductive explanations, we
provided the general rules that the simulated AI applied to gener-
ate its recommendations. For example, in Figure 1b, the deductive
explanation begins with “Here are ingredients the AI knows the fat
content of and recognized as main nutrients:” followed by a list of
ingredients.

We chose a within-subjects study design, where for one half of
the study session, participants saw inductive explanations and, for
the other half of the study session, they saw deductive explanations.
The order in which the two types of explanations were seen was
counterbalanced. Each AI had an overall accuracy of 75%, which
meant that in 25% of the cases the simulated AI misclassified the
image or misrecognized ingredients (e.g., Figure 1b). The order
of the specific food images was randomized, but all participants
encountered the AI errors at the same positions. We fixed the errors
at questions 4, 7, 11, 16, 22 and 23, though which food the error
was associated to was randomized. We included the ground truth
of the fat content of plates of food, because the main aim of the
proxy task was to measure whether the user builds correct mental
models of the AI and not to assess the actual nutrition expertise of
the participant.

3.1.2 Procedure. This study was conducted online, using Amazon
Mechanical Turk. Participants were first presented with brief in-
formation about the study and an informed consent form. Next,
participants completed the main part of the study, in which they
answered 24 nutrition-related questions, divided into two blocks of
12 questions. They saw inductive explanations in one block and the
deductive explanations in the other. The order of explanations was
randomized across participants. Participants completed mid-study
and end-study questionnaires so that they would provide a separate
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(a) (b)

Figure 1: The proxy task. Illustration of the simulated AI system participants interacted with: (a) is an example of an inductive
explanation with appropriate examples. (b) is an example of a deductive explanation with misrecognized ingredients, where
the simulated AI misrecognized apples and beets as avocados and bacon.

assessment for each of the two explanation types. They were also
asked to directly compare their experiences with the two simulated
AIs in a questionnaire at the end of the study.

3.1.3 Participants. We recruited 200 participants via Amazon Me-
chanical Turk (AMT). Participation was limited to adults in the US.
Of the total 200 participants, 183 were retained for final analyses,
while 17 were excluded based on their answers to two common-
sense questions included in the questionnaires (i.e.,What color is
the sky?). The study lasted 7 minutes on average. Each worker was
paid 2 USD.

3.1.4 Design and Analysis. This was a within-subjects design. The
within-subjects factor was explanation type — inductive or deduc-
tive.

We collected the following measures:

• Performance: Percentage of correct predictions of AI’s deci-
sions

• Appropriateness: Participants responded to the statement
“The AI based its decision on appropriate examples/ingredients.”
with either 0=No or 1=Yes (after every question)

• Trust: Participants responded to the statement “I trust this
AI to assess the fat content of food.” on a 5-point Likert scale
from 1=Strongly disagree to 5=Strongly agree (at the end of
each block)

• Mental demand: Participants answered the question “How
mentally demanding was understanding how this AI makes
decisions?” on a 5-point Likert scale from 1=Very low to
5=Very high (every four questions)

• Comparison between the two explanation types: Participants
were asked at the end of the study to choose one AI over
another on trust, preference, and mental demand.

We used repeated measures ANOVA for within-subjects analyses
and the binomial test for the comparison questions.

3.2 Actual Decision-making Task
3.2.1 Task description. The actual decision-making task had a simi-
lar set up to the proxy task. Participants were shown the same series
of 24 images of different plates of food, but were asked their own
decision whether the percent fat content of nutrients on the plate
is higher than a certain percentage. As illustrated in Figure 2, each
image was accompanied by an answer recommended by a simulated
AI, and an explanation provided by that AI. We introduced two
more conditions to serve as baselines in the actual decision-making
task depicted in Figure 3.

Therewere three between-subjects conditions in this study: 1. the
no-AI baseline (where no recommendations or explanations were
provided), 2. the no-explanation baseline (where a recommendation
was provided by a simulated AI, but no explanation was given),
and 3. the main condition in which both recommendations and
explanations were provided. In this last condition, two within-
subjects sub-conditions were present: for one half of the study
participants saw inductive explanations and for the other they
saw deductive explanations. The order in which the two types of
explanations were seen was counterbalanced. In the no-AI baseline,
participants were not asked any of the questions relating to the
performance of the AI.
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(a)
(b)

Figure 2: The actual task. Illustration of the simulated AI system participants interacted with. (a) is an example of incorrect
recommendations with inductive explanations. Contrasting the query image with the explanations reveals that the simulated
AI misrecognized churros with chocolate as sweet potato fries with BBQ sauce. (b) is an example of correct recommendation
with deductive explanations.

(a)
(b)

Figure 3: The baseline conditions. (a) no AI (b) no explana-
tions

The explanations in this task differed only slightly from the
explanations in the proxy task, because they indicated the AI’s
recommendation. Inductive explanations started with: “Here are
examples of plates that the AI categorizes as similar to the one
above and do (not) have X% or more fat.” followed by four examples
of images. Similarly, deductive explanations stated: “Here are in-
gredients the AI recognized as main nutrients which do (not) make
up X% or more fat on this plate:” followed by a list of ingredients.

3.2.2 Procedure. The procedure was the same as for the proxy task.
The study was conducted online, using the Amazon Mechanical
Turk. Participants were first presented with a brief information
about the study and an informed consent form. Next, participants

completed the main part of the study, in which they answered 24
nutrition-related questions, divided into two blocks of 12 questions.

All participants also completed a questionnaire at the end of the
study, providing subjective assessments of the system they inter-
acted with. Participants who were presented with AI-generated
recommendations accompanied by explanations also completed a
mid-study questionnaire (so that they would provide separate as-
sessment for each of the two explanation types) and they were also
asked to directly compare their experiences with the two simulated
AIs at the end of the study.

3.2.3 Participants. We recruited 113 participants via Amazon Me-
chanical Turk (AMT). Participation was limited to adults in the US.
Of the total 113 participants, 102 were retained for final analyses,
while 11 were excluded based on their answers to two common-
sense questions included in the pre-activity and post-activity ques-
tionnaires (i.e., “What color is the sky?” ). The task lasted 10 minutes
on average. Each worker was paid 5 USD per task.

3.2.4 Design and Analysis. This was a mixed between- and within-
subjects design. As stated before, the three between-subjects condi-
tions were: 1. the no-AI baseline; 2. the no-explanation baseline, in
which the AI-generated recommendations were provided but no ex-
planations; 3. the main condition, in which both the AI-generated
recommendations and explanations were provided. The within-
subjects factor was explanation type (inductive or deductive) and
it was applied only for participants who were presented with AI-
generated recommendations with explanations.
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We collected the following measures:
• Performance: Percentage of correct answers (overall for each
AI, and specifically for questions when AI presented incor-
rect explanations)

• Understanding: Participants responded to the statement “I
understand how the AI made this recommendation.” on a 5-
point Likert scale from 1=Strongly disagree to 5=Strongly
agree (after every question)

• Trust: Participants responded to the statement “I trust this
AI to assess the fat content of food.” on a 5-point Likert scale
from 1=Strongly disagree to 5=Strongly agree (every four
questions)

• Helpfulness: Participants responded to the statement “This
AI helped me assess the percent fat content.” on a 5-point
Likert scale from 1=Strongly disagree to 5=Strongly agree
(at the end of each block)

• Comparison between the two explanation types: Participants
were asked at the end of the study to choose one AI over
another on trust, preference, understanding and helpfulness.

We used analysis of variance (ANOVA) for between-subjects
analyses and repeated measures ANOVA for within-subjects analy-
ses. We used the binomial test for the comparison questions.

4 RESULTS
4.1 Proxy Task Results
The explanation type had a significant effect on participants’ trust
and preference in the system. Participants trusted the AI more
when presented with inductive explanations (M = 3.55), rather
than deductive explanations (M = 3.40, F1,182 = 5.37,p = .02).
Asked to compare the two AIs, most of the participants stated
they trusted more the inductive AI (58%,p = .04). When asked the
hypothetical question: “If you were asked to evaluate fat content of
plates of food, which AI would you prefer to interact with more?”,
again most of the participants (62%) chose the inductive AI over
the deductive AI (p = .001).

The inductive AI was also rated significantly higher (M = 0.83)
than the deductive AI (M = 0.79) in terms of the appropriateness
of examples (ingredients for the deductive condition) on which the
AI based its decision (F (1, 182) = 13.68,p = 0.0003). When the AI
presented incorrect examples/ingredients, there was no significant
difference among the inductive (M = 0.47) and deductive (M = 0.50)
conditions (F (1, 182) = 1.02,p = .31,n.s .).

We observed no significant difference in overall performance
when participants were presented with inductive (M = 0.64) or
deductive explanations (M = 0.64, F (1, 182) = 0.0009,n.s .). When
either AI presented incorrect explanations, although the average
performance dropped for both inductive (M = 0.40) and deductive
(M = 0.41) conditions, there was also no significant difference
among them (F (1, 182) = .03,n.s .).

In terms of mental demand, there was a significant effect of the
explanation type. Participants rated the deductive AI (M = 2.94)
as more mentally demanding than the inductive AI (M = 2.79,
F (1, 182) = 7.75,p = .0006). The effect was noticed also when
they were asked: “Which AI required more thinking while choosing
which decision it would make?”, with 61% of participants choosing
deductive over inductive (p = .005).

4.2 Actual Decision-making Task Results
18 participants were randomized into the no-AI condition, 19 into
the AI with no explanation condition, and 65 were presented with
AI recommendations supported by explanations.

We observed a significant main effect of the presence of explana-
tions on participants’ trust in the AI’s ability to assess the fat content
of food. Participants who saw either kind of explanation, trusted the
AI more (M = 3.56) than those who received AI recommendations,
but no explanations (M = 3.17, F1,483 = 11.28,p = .0008). Fur-
ther, there was a significant main effect of the explanation type on
participants’ trust: participants trusted the AI when they received
deductive explanations more (M = 3.68) than when they received
inductive explanations (M = 3.44, F1,64 = 5.96,p = .01). When
asked which of the two AIs they trusted more, most participants
(65%) said that they trusted the AI that provided deductive expla-
nations more than the one that provided inductive explanations
(p = .02).

Participants also found the AI significantly more helpful when
explanations were present (M = 3.78) than when no explanations
were offered (M = 3.26, F1,147 = 4.88,p = .03). Further, partici-
pants reported that they found deductive explanations more helpful
(M = 3.92) than inductive ones (M = 3.65) and this difference was
marginally significant (F1,64 = 3.66,p = .06). When asked which of
the two AIs they found more helpful, most participants (68%) chose
the AI that provided deductive explanations (p = .006).

Participants also reported that they understood how the AI made
its recommendations better when explanations were present (M =
3.84) thanwhen no explanationswere provided (M = 3.67, F1,2014 =
6.89p = .009). There was no difference in the perceived level of
understanding between the two explanation types (F1,64 = 0.44,p =
.51).

Asked about their overall preference, most participants (63%)
preferred the AI that provided deductive explanations over the AI
that provided inductive explanations (p = .05).

In terms of actual performance on the task, participants who
received AI recommendations (with or without explanations) pro-
vided a significantly larger fraction of accurate answers (M = 0.72)
than those who did not receive AI recommendations (M = 0.46,
F1,2446 = 118.07,p < .0001). Explanations further improved over-
all performance: participants who saw explanations of AI recom-
mendations had a significantly higher proportion of correct an-
swers (M = 0.74) than participants who did not receive explana-
tions of AI recommendations (M = 0.68, F1,2014 = 5.10,p = .02)
(depicted in Figure 4a). There was no significant difference be-
tween the two explanation types in terms of overall performance
(F1,64 = 0.44,n.s .). However, we observed a significant interac-
tion between explanation type and the correctness of AI recom-
mendations (F2,2013 = 15.03p < .0001). When the AI made cor-
rect recommendations, participants performed similarly when they
saw inductive (M = .78) and deductive (M = .81) explanations
(F1,64 = 1.13,n.s .). When the AI made incorrect recommendations,
however, participants were significantly more accurate when they
saw inductive (M = 0.63) than deductive (M = 0.48) explanation
(F1,64 = 7.02,p = .01) (depicted in Figure 4b).

To ensure the results of our studies were not random, we repli-
cated both experiments with almost identical setup and obtained
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Figure 4: Performance in the actual decision-making task. (a) depicts themean of performance among no-AI, no-Explanations
and with-Explanations (overall) conditions. (b) depicts the mean of performance among inductive and deductive conditions,
when the AI recommendation is correct and erroneous. Error bars indicate one standard error.

the same main results (in terms of significance) reported in this
section.

5 QUALITATIVE STUDY
Through the qualitative study, we explored the user reasoning and
sought to gain insight into the discrepancy between subjective
measures and performance. We asked participants to think aloud
during an in-person study in order to understand how and why
people perceive AI the way they do, in addition to what factors go
into making decisions when assisted by an AI.

5.1 Task
The same task designwas used in this study as in the actual decision-
making task, except that all participants were presented with the
main condition (where both recommendations and explanations
were provided). As in the actual decision-making task, each partici-
pant saw both inductive and deductive explanations.

5.2 Procedure
Upon arriving to the lab, participants were presented with an in-
formed consent form, including agreeing to being screen- and audio-
recorded, and instructions on the task. Afterwards, the steps in this
study were similar to those in the actual decision-making task, ex-
cept that we added the think-aloud method [11]: as participants
completed the task, they were asked to verbalize their thought
process as they made each decision. At the end of the task, there
was a semi-structured interview, during which participants briefly
discussed how they believed the two AIs were making their recom-
mendations and why they did or did not trust them. Participants
also discussed if and why they preferred one AI over the other.

5.3 Participants
We recruited 11 participants via community-wide emailing lists (8
female, 3 male, age range 23–29, M = 24.86, SD = 2.11). Participants
were primarily graduate students with backgrounds from design,
biomedical engineering, and education. Participants had varying
levels of experience with AI and machine learning, ranging from
0–5 years of experience.

5.4 Design and Analysis
We transcribed the think-aloud comments and the post-task inter-
views. Transcripts were coded and analyzed for patterns using an
inductive approach [39]. We focused on comments about (1) how
the AI made its recommendations; (2) trust in the AI; (3) erroneous
recommendations; (4) why people preferred one explanation type
over the other. From a careful reading of the transcripts, we discuss
some of the themes and trends that emerged from the data.

5.5 Results
Preference of one explanation type over another. Eight out
of the 11 participants preferred the inductive explanations. Par-
ticipants who preferred inductive explanations perceived the four
images as data. One participant stated that “Because [the AI] showed
similar pictures, I knew that it had data backing it up” (P3). On the
other hand, participants who preferred deductive explanations per-
ceived the listing of ingredients to be reliable, and that “if the AI
recognized that it’s steak, then I would think, Oh the AI knows more
about steak fat than I do, so I’m going to trust that since it identified
the object correctly.” (P6).

In our observations, we found that the way participants used the
explanations was different depending on the explanation type. With
inductive explanations, one participant often first made their own
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Figure 5: Subjective evaluations in terms of trust and prefer-
ence of the two AIs. Red and blue depict the percent of par-
ticipants that chose inductive and deductive AI, respectively.
(a) proxy task (b) actual decision-making task.

judgement before looking at the recommendation, and then used
the recommendation to confirm their own judgement. In a cake
example, one participant said, “So I feel it probably does have more
than 30% because it’s cake, and that’s cream cheese. But these are all
similar to that, and the AI also says that it does havemore than 30% fat,
so I agree” (P2). With deductive explanations, participants evaluated
the explanations and recommendation more before making any
decision. In the same cake example, a different participant said,
“There are [the AI recognizes] nuts, cream cheese, and cake. That
seems to make sense. Nuts are high in fat, so is dairy, so I agree with
that.” (P6).

Cognitive Demand. At the end of the study, participants were
asked which AI was easier to understand. Ten out of 11 partici-
pants felt the inductive explanations were easier to understand
than the deductive explanations. Several participants stated that
the deductive explanations forced them to think more, and that
generally they spent more time making a decision with deductive

explanations. One participant said, for example, “I feel like with this
one I have to think a bit more and and rely on my own experiences
with food to see or understand to gauge what’s fatty.” (P2).

Errors and Over-reliance. Nine out of 11 participants claimed
to trust the inductive explanations more. We intentionally intro-
duced erroneous recommendations because we expected partic-
ipants to utilize them to calibrate their mental model of the AI.
When participants understood the error and believed the error was
reasonable for an AI to make, they expressed less distrust in subse-
quent questions. However, when participants perceived the error
to be inconsistent with other errors, their trust in subsequent rec-
ommendations was hurt much more. For example, one participant
stated, “I think the AI makes the recommendation based on shape
and color. But in some other dessert examples, it was able to identify
the dessert as a dessert. So I wasn’t sure why it was so difficult to
understand this particular item” (P5).

We found that there was also some observable correlation be-
tween explanation type and trust. Many participants claimed it
was easier to identify errors from the inductive explanations, yet
agreed with erroneous recommendations from inductive explana-
tions more. In some of those instances, participants either did not
realize the main food image was different from the other four or felt
the main food image was similar enough though not exact. Lastly,
one participant stated the inductive explanations were easier to
understand because “you can visually see exactly why it would come
to its decision,”, but for deductive explanations “you can see what
it’s detecting but not why” (P8), and yet this participant also stated
that the deductive explanations seemed more trustworthy.

Impact of the Think-Aloud method on participant behav-
ior. In this study, we asked participants to perform the actual
decision-making task and we expected to observe similar results to
those obtained in the previous experiment when using the actual
tasks. Yet, in this study, 8 out of the 11 participants preferred the in-
ductive explanations and 10 out of 11 participants felt the inductive
explanations were easier to understand than the deductive expla-
nations. These results are comparable to the results we obtained in
the previous experiment when we used the proxy task rather than
the actual task.

We believe that the use of the think-aloud method may have
impacted participants’ behavior in this study. Specifically, because
participants were instructed to verbalize their thoughts, they were
more likely to engage in analytical thinking when considering
the AI recommendations and explanations than they were in the
previous experiment with the actual tasks, where their focus was
primarily on making decisions.

It is possible that while the think-aloud method is part of stan-
dard research practice for evaluating interfaces, it is itself a form
of cognitive forcing intervention [7], which impacts how people
perform on cognitively-demanding tasks such as interacting with
an explainable AI system on decision-making tasks. The act of talk-
ing about the explanations led participants to devote more of their
attention and cognition to the explanations, and thus made them
behave more similarly to participants in working with the proxy
task rather than those working with the actual task.
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6 DISCUSSION
In this study, we investigated two hypotheses regarding the evalua-
tion of AI-powered explainable systems:

• H1: Results of widely accepted proxy tasks, where the user
is asked to explicitly engage with the explanations, may not
predict the results of realistic settings where the user’s focus
is on the actual decision-making task.

• H2: Subjective measures, such as self-reported trust and
preference with respect to different explanation designs, may
not predict the ultimate human+AI performance.

We examined these hypotheses in the context of a nutrition-related
decision-making task, by designing two distinct evaluation tasks
and two distinct explanation designs. The first task was a proxy
task, where the users had to simulate the AI’s decision by exam-
ining the explanations. The second task was the more realistic,
actual decision-making task, where the user had to make their own
decisions about the nutritional content of meals assisted by AI-
generated recommendations and explanations. Each of the tasks
had two parts, where users interacted with substantially different
explanation styles—inductive and deductive.

In the experiment with the proxy task, participants preferred and
trusted the AI that used inductive explanations significantly more.
They also reported that the AI that used inductive explanations
based its decision on more accurate examples on average than the
AI that used deductive explanations. When asked “If you were asked
to evaluate fat content of plates of food, which AI would you prefer to
interact with more?” ), the majority of participants chose the AI that
provided inductive explanations.

In contrast with the proxy task experiment, in the experiment
with the actual decision-making task, participants rated the AI
with deductive explanations as their preferred AI, and viewed it as
more trustworthy and more helpful compared to the AI that used
inductive explanations.

The contrast in terms of performance measures was less pro-
nounced. When attempting proxy tasks, participants demonstrated
nearly identical accuracy regardless of explanation type. However,
when attempting actual decision-making tasks and the AI provided
an incorrect recommendation, participants ignored that incorrect
recommendation and provided the correct answer significantly
more often when they had access to inductive, not deductive, ex-
planations for the AI’s recommendation.

These contradictory results produced by the two experiments
indicate that results of evaluations that use proxy tasks may not
correspond to results on actual tasks, thus supportingH1. This may
be because in the proxy task the users cannot complete the task
without engaging analytically with the explanations. Whereas, in
the actual decision-making task, the user’s primary goal is to make
the most accurate decisions about the nutritional content of meals;
she chooses whether and how deeply she engages with the AI’s
recommendations and explanations.

This finding has implications for the explainable AI community,
as there is a current trend to use proxy tasks to evaluate user mental
models of the AI-powered systems, with the implicit assumption
that the results will translate to the realistic settings where users
make decisions about an actual task while assisted by an AI.

We tested H2 on the actual decision-making task. The results
show that participants preferred, trusted and found the AI with
deductive explanations more helpful than the AI that used inductive
explanations. Yet, they performed significantly better with the AI
that used inductive explanations when the AI made erroneous
recommendations. Therefore, H2 is also supported. This finding
suggests that the design decisions for explainable interfaces should
not be made by relying solely on user experience and subjective
measures. Subjective measures of trust and preference are, of course,
valuable and informative, but they should be used to complement
rather than replace performance measures.

Our research demonstrated that results from studies that use
proxy tasks may not predict results from studies that use realistic
tasks. Our results also demonstrated that user preference may not
predict their performance. However, we recognize that evaluating
novel AI advances through human subjects experiments that in-
volve realistic tasks is expensive in terms of time and resources, and
may negatively impact the pace of innovation in the field. Therefore,
future research needs to uncover why these differences exist so that
we can develop low burden evaluation techniques that correctly
predict the outcomes of deploying a system in a realistic setting.

We believe that the reason why explainable AI systems are sensi-
tive to the difference between proxy task and actual task evaluation
designs is that different AI explanation strategies require different
kinds and amounts of cognition from the users (like our inductive
and deductive explanations). However, people are reluctant to exert
cognitive effort [24, 25] unless they are motivated or forced to do
so. They also make substantially different decisions depending on
whether they choose to exert cognitive effort or not [12, 37]. In ac-
tual decision-making situations, people often choose not to engage
in effortful analytical thinking, even in high-stakes situations like
medical diagnosis [31]. Meanwhile, proxy tasks force participants
to explicitly pay attention to the behavior of the AI and the explana-
tions produced. Thus, results observed when participants interact
with proxy tasks do not accurately predict people’s behavior in
many realistic settings. In our study, participants who interacted
with the proxy task felt that the deductive explanations required
significantly more thinking than the inductive explanations. There-
fore, in the proxy task where the participants were obliged to exert
cognitive effort to evaluate the explanations, they said they pre-
ferred and trusted the less cognitively demanding explanations
more, the inductive explanations. In contrast, in the actual task the
participants could complete the task even without engaging with
the explanations. Thus, we suspect that in the deductive condition
participants perceived the explanations as too mentally demanding,
and chose to over-rely on the AI’s recommendation, just to avoid
cognitive effort of examining those explanations. They also might
have perceived the AI that provided deductive explanations as more
competent because it required more thinking.

One implication of our analysis is that the effectiveness of ex-
plainable AI systems can be substantially impacted by the design
of the interaction (rather than just the algorithms or explanations).
For example, a recent study showed that a simple cognitive forcing
strategy (having participants make their own preliminary decision
before being shown the AI’s decision) resulted in much higher ac-
curacy of the final decisions made by human+AI teams than any
strategy that did not involve cognitive forcing [17].

462



IUI’20, March 17–20, 2020, Cagliari, Italy Zana Buçinca, Phoebe Lin, Krzysztof Z. Gajos, and Elena L. Glassman

Inadvertently, we uncovered an additional potential pitfall for
evaluating explainable AI systems. As the results of our qualitative
study demonstrated, the use of the think-aloud method—a standard
technique for evaluating interactive systems—can also substantially
impact how participants allocate their mental effort. Because par-
ticipants were asked to think aloud, we suspect that they exerted
additional cognitive effort to engage with the explanations and
analyze their reasoning behind their decisions.

Together, these results indicate that cognitive effort is an impor-
tant aspect of explanation design and its evaluation. Explanations
high in cognitive demand might be ignored by the users while sim-
ple explanations might not convey the appropriate amount of evi-
dence that is needed to make informed decisions. At the same time,
traditional methods of probing users’ minds while using explainable
interfaces should also be re-evaluated. By taking into account the
cognitive effort and cognitive processes that are employed during
the evaluation of the explanations, we might generate explainable
interfaces that optimize the performance of the sociotechnical (hu-
man+AI) system as a whole. Such interfaces would instill trust, and
make the user aware of the system’s errors.

7 CONCLUSION
To achieve the aspiration of human+AI teams that complement one-
another and perform better than either the human or the AI alone,
researchers need to be cautious about their pragmatic decisions.
In this study, through online experiments and an in-person study,
we showed how several assumptions researchers make about the
evaluation of the explainable AI systems for decision-making tasks
could lead to misleading results.

First, choosing proxy tasks for the evaluation of explainable
AI systems shifts the user’s focus toward the AI, so the obtained
results might not correspond to results of the user completing the
actual decision-making task while assisted by the AI. In fact, our
results indicate that users trust and prefer one explanation design
(i.e. inductive) more in the proxy task, while they trust and prefer
the other explanation design (i.e. deductive) more in the actual
decision-making task.

Second, the subjective evaluation of explainable systems with
measures such as trust and preference may not correspond to the
ultimate user performance with the system. We found that people
trusted and preferred the AI with deductive explanations more, but
recognized AI errors better with the inductive explanations.

Lastly, our results suggest that think-aloud studies may not con-
vey how people make decisions with explainable systems in realistic
settings. The results from the think-aloud in-person study, which
used the actual task design, aligned more with the results we ob-
tained in the proxy task.

These findings suggest that to draw correct conclusions about
their experiments, explainable AI researchers should be wary of
the explainable systems’ evaluation pitfalls and design their evalua-
tion accordingly. Particularly, the correct and holistic evaluation of
explainable AI interfaces as sociotechnical systems is of paramount
importance, as they are increasingly being deployed in critical
decision-making domains with grave repercussions.
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